Abstract:
A resin molded rotor includes a rotor, a main shaft, and a resin mold. The rotor is configured to hold a magnet. The main shaft is provided with the rotor mounted thereto and is configured to transmit power to the outside. The resin mold is configured to integrally cover the rotor and part of the main shaft on respective sides in an axial direction of the rotor. An O-ring is placed between the resin mold and the main shaft to seal between the resin mold and the main shaft.
Abstract:
There is provided an exhaust gas processing apparatus configured to cause a processing gas to be exposed to or come into contact with a liquid and thereby detoxify the processing gas. The exhaust gas processing apparatus comprises a suction casing provided with an inlet which the processing gas is sucked into and with an outlet which the processing gas is flowed out from; a liquid tank configured to receive an outlet-side part of the suction casing and store the liquid therein; and one or multiple spray nozzles placed in the liquid tank. The outlet of the suction casing is arranged to be located above a liquid surface of the liquid stored in the liquid tank. The one or multiple spray nozzles are configured to spray the liquid from around the outlet of the suction casing to a peripheral part of the outlet.
Abstract:
Provided is a canned motor to be coupled to a vacuum pump and used as a rotary driving source for the vacuum pump. The canned motor includes: a stator core; a rotor provided on an inner side of the stator core; and a non-conductive can provided between the stator core and the rotor. The non-conductive can is configured to separate the stator core and the rotor from each other. The non-conductive can is made of resin, ceramic, or composite material thereof. The non-conductive can is bonded to the stator core with an adhesive.
Abstract:
Provided is a canned motor to be coupled to a vacuum pump and used as a rotary driving source for the vacuum pump. The canned motor includes: a stator core; a rotor provided on an inner side of the stator core; and a non-conductive can provided between the stator core and the rotor. The non-conductive can is configured to separate the stator core and the rotor from each other. The non-conductive can is made of resin, ceramic, or composite material thereof. The non-conductive can is bonded to the stator core with an adhesive.
Abstract:
A detoxifying device 100 having an inner wall 104 that forms a flow passage 103 through which treatment gas flows includes a first piping 130 that forms a part of the flow passage 103, a replaceable piping section 170 that forms a part of the flow passage 103 at the position downstream of the first piping 130, and is connected thereto for sprinkling the cleaning water to remove the solid product adhering to the inner wall 104, and a second piping 150 that forms a part of the flow passage 103 at the position downstream of the piping section 170, and is connected thereto.
Abstract:
A sealing structure for a vacuum pump motor which maintains the sealing properties of the vacuum pump motor in an ensured fashion, including a lead wire which is passed through an opening portion formed in a motor frame to be connected to a motor stator and a seal member which seals the opening portion. The lead wire includes a core wire portion and a covering portion which covers the core wire portion. The lead wire also includes a seal portion formed around at least part of the core wire portion inside the covering portion.
Abstract:
Provided is a canned motor to be coupled to a vacuum pump and used as a rotary driving source for the vacuum pump. The canned motor includes: a stator core; a rotor provided on an inner side of the stator core; and a non-conductive can provided between the stator core and the rotor. The non-conductive can is configured to separate the stator core and the rotor from each other. The non-conductive can is made of resin, ceramic, or composite material thereof. The non-conductive can is bonded to the stator core with an adhesive.
Abstract:
The fan scrubber is provided with a casing having a gas draw-in port and a gas ejection port, a fan disposed in the casing, a nozzle from which a liquid is jetted into the casing, and a canned motor connected to the fan. The canned motor has a main shaft connected to the fan, a rotor which rotates integrally with the main shaft, a stator disposed on the periphery of the rotor, a motor casing in which the rotor and the stator are housed, and a can which partitions the interior of the motor casing into a rotor chamber in which the rotor is disposed and a stator chamber in which the stator is disposed.
Abstract:
Provided is a canned motor to be coupled to a vacuum pump and used as a rotary driving source for the vacuum pump. The canned motor includes: a stator core; a rotor provided on an inner side of the stator core; and a non-conductive can provided between the stator core and the rotor. The non-conductive can is configured to separate the stator core and the rotor from each other. The non-conductive can is made of resin, ceramic, or composite material thereof. The non-conductive can is bonded to the stator core with an adhesive.
Abstract:
In order to provide a vacuum pump motor which is free from rotation imbalance, there is provided a vacuum pump motor 10 which is connected directly to a pump main shaft 21 of a vacuum pump 20, including a motor rotor 120 which is attached directly or indirectly to the pump main shaft 21 and balance rings 127 which are attached directly or indirectly to the pump main shaft 21 at ends thereof which are spaced apart from end portions of a rotor core 123, wherein the balance rings 127 contain a material having anticorrosion properties.