摘要:
In a high frequency flip chip package process of a polymer substrate and a structure thereof, the structure is a one-layer structure packaged by a high frequency flip chip package process to overcome the shortcomings of a conventional two-layer structure packaged by the high frequency flip chip package process. The conventional structure not only incurs additional insertion loss and return loss in its high frequency characteristic, but also brings out a reliability issue. Thus, the manufacturing process of a ceramic substrate in the conventional structure still has the disadvantages of a poor yield rate and a high cost.
摘要:
A high frequency flip chip package substrate of a polymer is a one-layer structure packaged by a high frequency flip chip package process to overcome the shortcomings of a conventional two-layer structure packaged by the high frequency flip chip package process. The conventional structure not only incurs additional insertion loss and return loss in its high frequency characteristic, but also brings out a reliability issue. Thus, the manufacturing process of a ceramic substrate in the conventional structure still has the disadvantages of a poor yield rate and a high cost.
摘要:
A high frequency flip chip package substrate of a polymer is a one-layer structure packaged by a high frequency flip chip package process to overcome the shortcomings of a conventional two-layer structure packaged by the high frequency flip chip package process. The conventional structure not only incurs additional insertion loss and return loss in its high frequency characteristic, but also brings out a reliability issue. Thus, the manufacturing process of a ceramic substrate in the conventional structure still has the disadvantages of a poor yield rate and a high cost.
摘要:
In a high frequency flip chip package process of a polymer substrate and a structure thereof, the structure is a one-layer structure packaged by a high frequency flip chip package process to overcome the shortcomings of a conventional two-layer structure packaged by the high frequency flip chip package process. The conventional structure not only incurs additional insertion loss and return loss in its high frequency characteristic, but also brings out a reliability issue. Thus, the manufacturing process of a ceramic substrate in the conventional structure still has the disadvantages of a poor yield rate and a high cost.
摘要:
A vertical transmission structure for high frequency transmission lines includes a conductive axial core and a conductive structure surrounding the conductive axial core. The vertical transmission structure is applied to a high-frequency flip chip package for reducing the possibility of underfill from coming in contact with the conductive axial core.
摘要:
A vertical transmission structure for high frequency transmission lines includes a conductive axial core and a conductive structure surrounding the conductive axial core. The vertical transmission structure is applied to a high-frequency flip chip package for reducing the possibility of underfill from coming in contact with the conductive axial core.
摘要:
A vertical transmission structure for high frequency transmission lines includes a conductive axial core and a conductive structure surrounding the conductive axial core. The vertical transmission structure is applied to a high-frequency flip chip package for reducing the possibility of underfill from coming in contact with the conductive axial core.
摘要:
An interposer includes a first surface on a first side of the interposer and a second surface on a second side of the interposer, wherein the first and the second sides are opposite sides. A first probe pad is disposed at the first surface. An electrical connector is disposed at the first surface, wherein the electrical connector is configured to be used for bonding. A through-via is disposed in the interposer. Front-side connections are disposed on the first side of the interposer, wherein the front-side connections electrically couple the through-via to the probe pad.
摘要:
An interposer includes a first surface on a first side of the interposer and a second surface on a second side of the interposer, wherein the first and the second sides are opposite sides. A first probe pad is disposed at the first surface. An electrical connector is disposed at the first surface, wherein the electrical connector is configured to be used for bonding. A through-via is disposed in the interposer. Front-side connections are disposed on the first side of the interposer, wherein the front-side connections electrically couple the through-via to the probe pad.
摘要:
A vertical transmission structure for high frequency transmission lines includes a conductive axial core and a conductive structure surrounding the conductive axial core. The vertical transmission structure is applied to a high-frequency flip chip package for reducing the possibility of underfill from coming in contact with the conductive axial core.