摘要:
A MOS capacitor in which an insulating layer of thermal oxide film is disposed between the electrode 2 and the silicon wafer 1 is formed. While a light beam of an energy larger than 1.1 eV is irradiated on the electrode 2 and its periphery, electrons inject from the electrode 2 side (voltage is applied from the silicon wafer 1 side). The injected electrons are activated by the light irradiation. For both p-type or n-type semiconductor, the dielectric breakdown electric field strength can be precisely measured according to the degree of processing defects. The evaluation method is particularly effective for the n-type semiconductor wafer, which was difficult to evaluate by the prior art.
摘要:
The evaluating method includes: dipping a mirror-polished silicon wafer in a dilute hydrofluoric acid; washing the surface of the silicon wafer; subjecting the surface-washed silicon wafer to a heat treatment in an oxygen atmosphere to form a thermal oxidation film; forming a predetermined number of polycrystalline silicon electrodes having a predetermined area on the thermal oxidation film; applying a voltage to each electrode between the predetermined number of polycrystalline silicon electrodes and the silicon wafer; and judging the quality of the mirror-polishing process of the silicon wafers in accordance with the breakdown electric field intensity of the leakage current obtained by measuring the oxide film insulation.
摘要:
A process for precisely and efficiently manufacturing a semiconductor wafer is provided, which can prevent contamination by metals inside silicon crystals and remove the factors that degrade the GOI produced during the wafer manufacturing steps. A sliced and chamfered semiconductor wafer is subjected to lapping. The lapped semiconductor wafer is then etched, and thus the working strains produced by lapping is removed. The two sides of the etched semiconductor wafer are then primary polished with a dual-surface polishing machine. The primary polished semiconductor wafer is etched with an aqueous solution of 1% NaOH solution. The weak alkali etched semiconductor wafer is then mirror processed by a finish polishing. The finish polished semiconductor wafer is washed with an SC-1 solution.
摘要:
In an epoxy resin composition comprising (A) an epoxy resin, (B) a curing agent, (C) an inorganic compound, and (D) an inorganic filler, the inorganic compound (C) is an oxide of metal elements at least one of which is a metal element of Group II in the Periodic Table having a second ionization potential of up to 20 eV, typically Zn2SiO4, ZnCrO4, ZnFeO4 or ZnMoO4. When used for semiconductor encapsulation, the epoxy resin composition is highly reliable and cures into a product which is effective for minimizing electrical failure such as defective insulation due to a copper migration phenomenon.
摘要:
An epoxy resin composition comprising (A) a mixture of a naphthalene type epoxy resin and an anthracene type epoxy resin, (B) a curing agent in the form of a naphthalene type phenolic resin, and (C) an inorganic filler is best suited for semiconductor encapsulation.
摘要:
An epoxy resin composition comprising (A) a biphenyl skeleton epoxy resin, (B) a biphenyl skeleton phenolic resin as a curing agent, (C) molybdenum compound, and (D) an inorganic filler is suited for semiconductor encapsulation since it is effectively moldable and cures into a part having improved reflow crack resistance, moisture resistance, and flame retardance. It does not pose a hazard to human health or the environment.
摘要:
A semiconductor encapsulating epoxy resin composition is provided comprising (A) an epoxy resin, (B) a phenolic resin curing agent, (C) a microencapsulated flame retardant comprising a red phosphorus-base core coated with a thermoplastic resin and/or thermosetting resin, (D) a molybdenum compound, and (E) an inorganic filler. The composition and its cured product have moisture-proof reliability and high flame retardance despite the absence of halogenated epoxy resins and antimony oxide.
摘要:
An epoxy resin composition comprising (A) a naphthalene type epoxy resin in which 35-85 parts by weight of 1,1-bis(2-glycidyloxy-1-naphthyl)alkane and 1-35 parts by weight of 1,1-bis(2,7-diglycidyloxy-1-naphthyl)alkane are included per 100 parts by weight of the resin, (B) a phenolic resin curing agent, (C) a copolymer obtained through addition reaction of alkenyl groups on an alkenyl-containing epoxy compound and SiH groups on an organohydrogenpolysiloxane of 20 to 50 silicon atoms, and (D) an inorganic filler is best suited for semiconductor encapsulation because the cured composition has good thermal cycling, anti-warping, reflow resistance, and moisture-proof reliability.
摘要:
A semiconductor encapsulating epoxy resin composition is provided comprising (A) an epoxy resin, (B) a phenolic resin curing agent, (C) a molybdenum compound, (D-i) an organopolysiloxane, (D-ii) an organopolysiloxane cured product, or (D-iii) a block copolymer obtained by reacting an epoxy resin or alkenyl group-bearing epoxy resin with an organohydrogenpolysiloxane, and (E) an inorganic filler. The composition has improved moldability and solder crack resistance while exhibiting high flame retardance despite the absence of halogenated epoxy resins and antimony oxide.
摘要:
In an epoxy resin composition comprising (A) an epoxy resin, (B) a curing agent, (C) an inorganic compound, and (D) an inorganic filler, the inorganic compound (C) is an oxide of metal elements at least one of which is a metal element of Group II in the Periodic Table having a second ionization potential of up to 20 eV, typically Zn2SiO4, ZnCrO4, ZnFeO4 or ZnMoO4. When used for semiconductor encapsulation, the epoxy resin composition is highly reliable and cures into a product which is effective for minimizing electrical failure such as defective insulation due to a copper migration phenomenon.