摘要:
Provided is a method for manufacturing a semiconductor package, the method including providing a semiconductor chip on a substrate, providing a bonding member between the substrate and the semiconductor chip, and bonding the semiconductor chip on the substrate by irradiating of a laser on the substrate. Here, the bonding member may include a thermosetting resin, a curing agent, and a laser absorbing agent.
摘要:
The present inventive concept discloses an impact-type piezoelectric micro power generator. The impact-type piezoelectric micro power generator may comprise a base having a cavity and at least one stop area adjacent to the cavity; a frame fastened to the base; a vibrating body comprising a plurality of first vibrating beams extended from the frame toward a top of the cavity, an impact beam connected to between first tips of the plurality of first vibrating beams and extended onto the stop area, and a second vibrating beam extended from the impact beam to between the plurality of first vibrating beams, the second vibrating beam having a second tip; and a piezoelectric device disposed on one of a top and a bottom of the second vibrating beam and the impact beam, the piezoelectric device generating electric power according to impacts of the vibrating body to the stop area and bending of the impact beam and the second vibrating beam.
摘要:
Provided are a semiconductor device and a method of fabricating the same. The semiconductor device includes: an active region provided on a substrate; an inlet channel formed as a single cavity buried in one side of the substrate; an outlet channel formed as a single cavity buried in the other side of the substrate; a micro channel array comprising a plurality of micro channels, wherein the plurality of micro channels are formed as a plurality of cavities buried in the substrate, and one end of the micro channel array is connected to a side of the inlet channel and the other end of the micro channel array is connected to a side of the outlet channel; and a micro heat sink array separating the micro channels from one another.
摘要:
The present inventive concept discloses an impact-type piezoelectric micro power generator. The impact-type piezoelectric micro power generator may comprise a base having a cavity and at least one stop area adjacent to the cavity; a frame fastened to the base; a vibrating body comprising a plurality of first vibrating beams extended from the frame toward a top of the cavity, an impact beam connected to between first tips of the plurality of first vibrating beams and extended onto the stop area, and a second vibrating beam extended from the impact beam to between the plurality of first vibrating beams, the second vibrating beam having a second tip; and a piezoelectric device disposed on one of a top and a bottom of the second vibrating beam and the impact beam, the piezoelectric device generating electric power according to impacts of the vibrating body to the stop area and bending of the impact beam and the second vibrating beam.
摘要:
Provided are a large-area nano-scale active printing device, a fabricating method of the same, and a printing method using the same. The printing device may include a substrate, first interconnection lines extending along a first direction, on the substrate, an interlayered dielectric layer provided on the first interconnection lines to have holes partially exposing the first interconnection lines, second interconnection lines provided adjacent to the holes in the interlayered dielectric layer to cross the first interconnection lines, and wedge-shaped electrodes provided at intersections with the first and second interconnection lines and connected to the first interconnection lines. The wedge-shaped electrodes protrude upward at centers of the holes.
摘要:
Provided is a mobile e-binder system including at least one display configured to display data, a docking system electrically connected to the at least one display to exchange the data using a standardized communication protocol, and a computing device configured to store and process the data and send the data to the at least one display. The at least one display may be configured to be attachable and detachable to the docking system.
摘要:
A laser bonding method includes forming a bonding part including an adhesive layer and a conductive particle disposed within the adhesive layer on a substrate; aligning a bonding target by disposing the bonding target on a surface of the bonding part opposite the substrate; disposing a pressing part on a surface of the bonding target that is opposite to the bonding part and pressing the bonding target onto the bonding part through the pressing part; heating the bonding target by irradiating at least the pressing part with a laser and conducting heat from the pressing part to the bonding target and from the bonding target to the bonding part; and bonding together the bonding part and the bonding target by the heat conducted from the bonding target to the bonding part so that the conductive particle electrically connects the substrate and the bonding target. The pressing part may be removed.
摘要:
Provided are a semiconductor device and a method of fabricating the same. The semiconductor device includes: an active region provided on a substrate; an inlet channel formed as a single cavity buried in one side of the substrate; an outlet channel formed as a single cavity buried in the other side of the substrate; a micro channel array comprising a plurality of micro channels, wherein the plurality of micro channels are formed as a plurality of cavities buried in the substrate, and one end of the micro channel array is connected to a side of the inlet channel and the other end of the micro channel array is connected to a side of the outlet channel; and a micro heat sink array separating the micro channels from one another.
摘要:
Provided is a method of manufacturing a nitride semiconductor device. The method includes forming a plurality of electrodes on a growth substrate on which first and second nitride semiconductor layers are sequentially stacked, forming upper metal layers on the plurality of electrodes respectively, removing the growth substrate to expose a lower surface of the first nitride semiconductor layer, and forming a third nitride semiconductor layer and a lower metal layer sequentially on the exposed lower surface of the first nitride semiconductor layer.
摘要:
Provided are a large-area nano-scale active printing device, a fabricating method of the same, and a printing method using the same. The printing device may include a substrate, first interconnection lines extending along a first direction, on the substrate, an interlayered dielectric layer provided on the first interconnection lines to have holes partially exposing the first interconnection lines, second interconnection lines provided adjacent to the holes in the interlayered dielectric layer to cross the first interconnection lines, and wedge-shaped electrodes provided at intersections with the first and second interconnection lines and connected to the first interconnection lines. The wedge-shaped electrodes protrude upward at centers of the holes.