摘要:
A multi-element optical detector includes a plurality of optical detector elements capable of producing an output signal having information about the state of an incident electromagnetic radiation as a function of time. An active region includes a photosensitive region of one of the optical detector elements separated in part or in whole from the photosensitive region of at least one other optical detector element by a distance less than the wavelength of the electromagnetic radiation that the optical detector elements are being used to detect.
摘要:
A multi-element optical detector includes a plurality of optical detector elements capable of producing an output signal having information about the state of an incident electromagnetic radiation as a function of time. An active region includes a photosensitive region of one of the optical detector elements separated in part or in whole from the photosensitive region of at least one other optical detector element by a distance less than the wavelength of the electromagnetic radiation that the optical detector elements are being used to detect.
摘要:
Complex self-assembled patterns can be created using a sparse template and local changes to the shape or distribution of the posts of the template to direct pattern generation of block copolymer. The post spacing in the template is formed commensurate with the equilibrium periodicity of the block copolymer, which controls the orientation of the linear features. Further, the posts can be arranged such that the template occupies only a few percent of the area of the final self-assembled patterns. Local aperiodic features can be introduced by changing the period or motif of the lattice or by adding guiding posts. According to one embodiment, an array of carefully spaced and shaped posts, prepared by electron-beam patterning of an inorganic resist, can be used to template complex patterns in a cylindrical-morphology block copolymer. These complex self-assembled patterns can form a mask used in fabrication processes of arbitrary structures such as interconnect layouts.
摘要:
Complex self-assembled patterns can be created using a sparse template and local changes to the shape or distribution of the posts of the template to direct pattern generation of block copolymer. The post spacing in the template is formed commensurate with the equilibrium periodicity of the block copolymer, which controls the orientation of the linear features. Further, the posts can be arranged such that the template occupies only a few percent of the area of the final self-assembled patterns. Local aperiodic features can be introduced by changing the period or motif of the lattice or by adding guiding posts. According to one embodiment, an array of carefully spaced and shaped posts, prepared by electron-beam patterning of an inorganic resist, can be used to template complex patterns in a cylindrical-morphology block copolymer. These complex self-assembled patterns can form a mask used in fabrication processes of arbitrary structures such as interconnect layouts.
摘要:
In a method for imprinting a layer of material, a nanotemplate is impressed into a material layer, and the nanotemplate is maintained impressed in the material layer until a geometric trench corresponding to geometry of the nanotemplate is formed in the layer, and the nanotemplate is then removed from the material layer. A nanotemplate geometric trench is repeatedly formed in the material layer by nanotemplate impressions in the layer, until a final desired imprint pattern is produced in the layer. Each nanotemplate geometric trench is characterized by an extent that is a fraction of an extent of the final desired imprint pattern. The material layer is maintained in a condition for accepting nanotemplate impressions continuously throughout the nanotemplate impression repetition.
摘要:
Systems, articles, and methods are provided related to nanowire-based detectors, which can be used for light detection in, for example, single-photon detectors. In one aspect, a variety of detectors are provided, for example one including an electrically superconductive nanowire or nanowires constructed and arranged to interact with photons to produce a detectable signal. In another aspect, fabrication methods are provided, including techniques to precisely reproduce patterns in subsequently formed layers of material using a relatively small number of fabrication steps. By precisely reproducing patterns in multiple material layers, one can form electrically insulating materials and electrically conductive materials in shapes such that incoming photons are redirected toward a nearby electrically superconductive materials (e.g., electrically superconductive nanowire(s)). For example, one or more resonance structures (e.g., comprising an electrically insulating material), which can trap electromagnetic radiation within its boundaries, can be positioned proximate the nanowire(s). The resonance structure can include, at its boundaries, electrically conductive material positioned proximate the electrically superconductive nanowire such that light that would otherwise be transmitted through the sensor is redirected toward the nanowire(s) and detected. In addition, electrically conductive material can be positioned proximate the electrically superconductive nanowire (e.g. at the aperture of the resonant structure), such that light is directed by scattering from this structure into the nanowire.
摘要:
Systems and methods related to the generation of interference patterns using electromagnetic radiation are generally described. Some embodiments are directed to the use of such systems and methods to perform interference lithography.
摘要:
Improved methods of forming a patterned self-assembled monolayer on a surface and derivative articles are provided. According to one method, an elastomeric stamp is deformed during and/or prior to using the stamp to print a self-assembled molecular monolayer on a surface. According to another method, during monolayer printing the surface is contacted with a liquid that is immiscible with the molecular monolayer-forming species to effect controlled reactive spreading of the monolayer on the surface. Methods of printing self-assembled molecular monolayers on nonplanar surfaces and derivative articles are provided, as are methods of etching surfaces patterned with self-assembled monolayers, including methods of etching silicon. Optical elements including flexible diffraction gratings, mirrors, and lenses are provided, as are methods for forming optical devices and other articles using lithographic molding. A method for controlling the shape of a liquid on the surface of an article is provided, involving applying the liquid to a self-assembled monolayer on the surface, and controlling the electrical potential of the surface.
摘要:
Improved method of forming a patterned self-assembled monolayer on a surface and derivative articles are provided. According to one method, an elastomeric stamp is deformed during and/or prior to using the stamp to print a self-assembled molecular monolayer on a surface. According to another method, during monolayer printing the surface is contacted with a liquid that is immiscible with the molecular monolayer-forming species to effect controlled reactive spreading of the monolayer on the surface. Methods of printing self-assembled molecular monolayers on nonplanar surfaces and derivative articles are provided, as are methods of etching surfaces patterned with self-assembled monolayers, including methods of etching silicon. Optical elements including flexible diffraction gratings, mirrors, and lenses are provided, as are methods for forming optical devices and other articles using lithographic molding. A method for controlling the shape of a liquid on the surface of an article is provided, involving applying the liquid to a self-assembled monolayer on the surface, and controlling the electrical potential of the surface.
摘要:
In a method for imprinting a layer of material, a nanotemplate is impressed into a material layer, and the nanotemplate is maintained impressed in the material layer until a geometric trench corresponding to geometry of the nanotemplate is formed in the layer, and the nanotemplate is then removed from the material layer. A nanotemplate geometric trench is repeatedly formed in the material layer by nanotemplate impressions in the layer, until a final desired imprint pattern is produced in the layer. Each nanotemplate geometric trench is characterized by an extent that is a fraction of an extent of the final desired imprint pattern. The material layer is maintained in a condition for accepting nanotemplate impressions continuously throughout the nanotemplate impression repetition.