摘要:
The present invention provides the transgenic soybean event MON87754, and the cells, seeds, plant parts, and plants comprising DNA diagnostic for this transgenic soybean event. The event itself functions to increase the oil content of soybeans carrying the event in their genome relative to commodity versions of soy. The invention also provides compositions comprising nucleotide sequences that are diagnostic for said soybean event in a sample, methods for detecting the presence of said soybean event nucleotide sequences in a sample, probes and primers for use in detecting nucleotide sequences that are diagnostic for the presence of said soybean event in a sample, growing the seeds of such soybean event into soybean plants, and breeding to produce soybean plants comprising DNA diagnostic for the soybean event.
摘要:
The present invention provides the transgenic soybean event MON87754, and the cells, seeds, plant parts, and plants comprising DNA diagnostic for this transgenic soybean event. The event itself functions to increase the oil content of soybeans carrying the event in their genome relative to commodity versions of soy. The invention also provides compositions comprising nucleotide sequences that are diagnostic for said soybean event in a sample, methods for detecting the presence of said soybean event nucleotide sequences in a sample, probes and primers for use in detecting nucleotide sequences that are diagnostic for the presence of said soybean event in a sample, growing the seeds of such soybean event into soybean plants, and breeding to produce soybean plants comprising DNA diagnostic for the soybean event.
摘要:
In one embodiment, the present invention relates to a method of forming a flash memory cell, involving the steps of forming a tunnel oxide on a substrate; forming a first polysilicon layer over the tunnel oxide; forming an insulating layer over the first polysilicon layer, the insulating layer comprising an oxide layer made by low pressure chemical vapor deposition at a temperature from about 600.degree. C. to about 850.degree. C. using SiH.sub.4 and N.sub.2 O, annealing in an NH.sub.3 atmosphere at a temperature from about 800.degree. C. to about 900.degree. C., and wet oxidizing using O.sub.2 and H.sub.2 at a temperature from about 820.degree. C. to about 880.degree. C.; forming a second polysilicon layer over the insulating layer; etching at least the first polysilicon layer, the second polysilicon layer and the insulating layer, thereby defining at least one stacked gate structure; and forming a source region and a drain region in the substrate, thereby forming at least one memory cell.
摘要:
A polysilicon-based floating gate is formed so as to be resistant to oxidation that occurs during multiple thermo-cycles in fabrication. Accordingly, edge erase times in NOR-type memory devices may be minimized. Additionally, manufacture of oxidation resistant floating gates reduces variations in edge erase times among multiple NOR-type memory devices. A layer of amorphous silicon is deposited over a silicon substrate by directing a mixture of silane and a phosphene-helium gas mixture at the surface of the silicon substrate. Later, N+ ions are implanted into the amorphous silicon. The amorphous silicon layer is then etched so as to overlap slightly with regions that will later correspond to the source and drain regions. Next, a lower oxide layer of an ONO dielectric is deposited and the device is heated. A thermo-cycle is eliminated by heating the amorphous silicon during formation of the oxide layer rather than immediately following its deposition. Later, the nitride and oxide layers of the ONO dielectric, a second polysilicon layer, a tungsten silicide layer, and SiON layers are successively formed.
摘要:
Polystringers that cause NAND-type memory core cells to malfunction are removed. A SiON layer, tungsten silicide layer, second polysilicon layer, ONO dielectric, and first polysilicon layer are successively removed from between NAND-type flash memory core cells leaving ONO fence that shields some first polysilicon layer material from removal. Next, the device is exposed to oxygen gas in a high temperature environment to oxidize the surface of the device, and in particular to remove the polystringers.
摘要:
A catheter for sensing electrical events about a selected annulus region of the heart and for treating tissue in the selected annulus region has a handle assembly, a shaft having a proximal end coupled to the handle assembly, a first expandable member provided at the distal end of the shaft, and a second expandable member positioned adjacent to, but spaced apart from, the first expandable member. The second expandable member has an ablation element that emits energy to a radially surrounding area to ablate tissue.
摘要:
The present invention is directed to a prosthesis for treating an aneurysm, and delivery systems and methods therefor. The prosthesis includes a radially expanding distal section coupled to a helical section, the helical section including a localized feature configured to exclude or retard blood flow into an aneurysm. Methods of loading the prosthesis onto a specially-designed delivery system that facilitates proper orientation of the prosthesis within a target vessel, and methods of using the delivery system to deliver the prosthesis, also are provided.
摘要:
The present invention is directed to a balloon catheter, such as a dilatation catheter and a stent delivery catheter with improved stiffness transition and specifically with no sudden changes in stiffness along the catheter length. The balloon catheters of the present invention may be used alone or be mounted with a stent in. The balloon catheters of the present invention may be used in peripheral, coronary, or neurovascular applications. The present catheter has more than one portion with different bending stiffness values, each portion comprising of components that gradually transition the bending stiffness of that portion to an adjacent portion, thus reducing the differential in bending stiffness in moving from one region to another, when the catheter is used alone or in combination with a stent in a stent delivery system.
摘要:
In one embodiment, the present invention relates to a method of forming a flash memory cell, involving the steps of forming a tunnel oxide on a substrate; forming a first polysilicon layer over the tunnel oxide; forming an insulating layer over the first polysilicon layer, the insulating layer comprising a first oxide layer over the first polysilicon layer, a nitride layer over the first oxide layer, and a second oxide layer over the nitride layer, wherein the second oxide layer is made by forming the second oxide layer by low pressure chemical vapor deposition at a temperature from about 600.degree. C. to about 850.degree. C. using SiH.sub.4 and N.sub.2 O and annealing in an N.sub.2 O atmosphere at a temperature from about 700.degree. C. to about 950.degree. C.; forming a second polysilicon layer over the insulating layer; etching at least the first polysilicon layer, the second polysilicon layer and the insulating layer, thereby defining at least one stacked gate structure; and forming a source region and a drain region in the substrate, thereby forming at least one memory cell.
摘要:
Provided are test vehicles for evaluating various semiconductor materials. These materials may be used for various integrated circuit components, such as embedded resistors of resistive random access memory cells. Also provided are methods of fabricating and operating these test vehicles. A test vehicle may include two stacks protruding through an insulating body. Bottom ends of these stacks may include n-doped poly-silicon and may be interconnected by a connector. Each stack may include a titanium nitride layer provided over the poly-silicon end, followed by a titanium layer over the titanium nitride layer and a noble metal layer over the titanium layer. The noble metal layer extends to the top surface of the insulating body and forms a contact surface. The titanium layer may be formed in-situ with the noble metal layer to minimize oxidation of the titanium layer, which is used as an adhesion and oxygen getter.