摘要:
A vacuum chamber with a cover with a first section, a second section, and a pocket between the first section and second section is provided. The vacuum chamber has a main cavity to which the first section is adjacent. The vacuum chamber may be used for plasma processing, which may require a critical element to be supported by the first section. The pocket is in fluid communication with the main cavity. When a vacuum is created in the main cavity, the pressure is also reduced in the pocket. As a result, the second section of the cover is deformed by the vacuum in the pocket. However, the vacuum in the pocket helps to prevent the first section from deforming, providing better support for the critical element.
摘要:
A vacuum chamber with a cover with a first section, a second section, and a pocket between the first section and second section is provided. The vacuum chamber has a main cavity to which the first section is adjacent. The vacuum chamber may be used for plasma processing, which may require a critical element to be supported by the first section. The pocket is in fluid communication with the main cavity. When a vacuum is created in the main cavity, the pressure is also reduced in the pocket. As a result, the second section of the cover is deformed by the vacuum in the pocket. However, the vacuum in the pocket helps to prevent the first section from deforming, providing better support for the critical element.
摘要:
A plasma processing chamber is provided which provides improved wafer area pressure control. The plasma processing chamber is a vacuum chamber with a device connected for generating and sustaining a plasma. Part of this device would be an etchant gas source and an exhaust port. A confinement ring defines an area above a wafer. The wafer area pressure is dependent on the pressure drop across the confinement ring. The confinement ring is part of a confinement device that provides wafer area pressure control greater than 40%. Such a confinement device may be a fixed vertical restriction ring in addition to the confinement ring, where the confinement ring is adjustable. In the alternative, three adjustable confinement rings may be used to provide the desired wafer area pressure control.
摘要:
A gas distribution system for uniformly or non-uniformly distributing gas across the surface of a semiconductor substrate. The gas distribution system includes a support plate and a showerhead which are secured together to define a gas distribution chamber therebetween. A baffle assembly including one or more baffle plates is located within the gas distribution chamber. The baffle arrangement includes a first gas supply supplying process gas to a central portion of the baffle chamber and a second gas supply supplying a second process gas to a peripheral region of the baffle chamber. Because the pressure of the gas is greater at locations closer to the outlets of the first and second gas supplies, the gas pressure at the backside of the showerhead can be made more uniform than in the case with a single gas supply. In one arrangement, the first and second gas supplies open into a plenum between a top baffle plate and a temperature controlled support member wherein the plenum is divided into the central and peripheral regions by an O-ring. In a second arrangement, the first gas supply opens into the central region above an upper baffle plate and the second gas supply opens into the periphery of a plenum between the upper baffle plate and a lower baffle plate.
摘要:
A vacuum chamber with a cover with a first section, a second section, and a pocket between the first section and second section is provided. The vacuum chamber has a main cavity to which the first section is adjacent. The vacuum chamber may be used for plasma processing, which may require a critical element to be supported by the first section. The pocket is in fluid communication with the main cavity. When a vacuum is created in the main cavity, the pressure is also reduced in the pocket. As a result, the second section of the cover is deformed by the vacuum in the pocket. However, the vacuum in the pocket helps to prevent the first section from deforming, providing better support for the critical element.
摘要:
A gas distribution system for uniformly or non-uniformly distributing gas across the surface of a semiconductor substrate. The gas distribution system includes a support plate and a showerhead which are secured together to define a gas distribution chamber therebetween. A baffle assembly including one or more baffle plates is located within the gas distribution chamber. The baffle arrangement includes a first gas supply supplying process gas to a central portion of the baffle chamber and a second gas supply supplying a second process gas to a peripheral region of the baffle chamber. Because the pressure of the gas is greater at locations closer to the outlets of the first and second gas supplies, the gas pressure at the backside of the showerhead can be made more uniform than in the case with a single gas supply. In one arrangement, the first and second gas supplies open into a plenum between a top baffle plate and a temperature controlled support member wherein the plenum is divided into the central and peripheral regions by an O-ring. In a second arrangement, the first gas supply opens into the central region above an upper baffle plate and the second gas supply opens into the periphery of a plenum between the upper baffle plate and a lower baffle plate.
摘要:
In a plasma processing system, an integrated gas flow control assembly for connecting a gas distribution system to a multi-zone injector is disclosed. The assembly includes a first set of channels connecting the gas distribution system to a first valve assembly with a first flow rate, a second valve assembly with a second flow rate, a third flow assembly with a third flow rate, and a fourth flow assembly with a fourth flow rate, wherein when the first valve assembly is substantially open, the third flow rate is less than the first flow rate, and wherein when the second valve assembly is substantially open, the fourth flow rate is less than the second flow rate. The assembly also includes a second set of channels for connecting the third flow assembly and the first valve assembly to a first multi-zone injector zone. The assembly further includes a third set of channels for connecting the fourth flow assembly and the second valve assembly to a second multi-zone injector zone. Wherein if the first valve assembly is closed, a first multi-zone injector zone flow rate is about the third flow rate, and wherein if the second valve assembly is closed, a second multi-zone injector zone flow rate is about the fourth flow rate.
摘要:
This invention is an apparatus for purging unwanted gasses from the Front Opening Unified Pod (FOUP). It consists of a purging wand which is inserted into the chamber for an optimal purge. The purging wand moves back and forth along a simple axis activated by a linkage robot. The wand is carried along a track with the FOUP and when its reaches its optimal position inside the FOUP, the source of cleaning gas is allowed to flow into and spray out of the wand thereby purging the FOUP. After the purging is completed, the linkage robot withdraws the wand from within the FOUP to its original position.
摘要:
A plasma processing system for processing a substrate is disclosed. The plasma processing system includes a process chamber within which a plasma is both ignited and sustained for processing. The plasma processing system further includes an electrode disposed at the lower end of the process chamber. The electrode is configured for generating an electric field inside the process chamber. The plasma processing system also includes a component for controlling an impedance between the electrode and the plasma. The impedance is arranged to affect the electric field to improve processing uniformity across the surface of the substrate.
摘要:
A symmetrical semiconductor reactor for semiconductor processing, comprising a liner, a process chamber, a valve chamber, a slot valve plate, a liner aperture plate, a rod, and an actuator. The liner has a liner aperture adapted to provide passage for a wafer and to receive the liner aperture plate. The process chamber is coupled to the liner and the valve chamber. The actuator is coupled to the slot valve plate and moves the slot valve plate from the “closed” to the “open” position and vice versa. Since the slot valve plate is coupled to the liner aperture plate by the rod, the actuator is capable of moving the slot valve plate and the liner aperture plate at the same time. However, the precise movements of the liner aperture plate are dependent on the particular rod embodiment.