摘要:
A method of fabricating a semiconductor device comprises forming a gate electrode over a substrate and forming deep amorphous regions within the substrate. And implanting dopants to form deep source/drain regions at a depth less than that of the deep amorphous regions, partially re-crystallizing portions of the deep amorphous regions to reduce their depth, and re-crystallizing the reduced amorphous regions to form activated final source/drain regions.
摘要:
Semiconductor devices comprising fully and partially depleted SOI transistors with accurately defined monocrystalline or substantially completely monocrystalline silicon source/drain extensions are fabricated by selectively pre-amorphizing intended source/drain extensions, ion implanting dopants into the pre-amorphized regions and laser thermal annealing to effect crystallization and activation of the source/drain extensions. Embodiments include forming a gate electrode over an SOI substrate with a gate dielectric layer therebetween, forming silicon nitride sidewall spacers on the side surfaces of the gate electrode, forming source/drain regions, forming a thermal oxide layer on the gate electrode and on the source/drain regions, removing the silicon nitride sidewall spacers, pre-amorphizing the intended source/drain extension regions, ion implanting impurities into the pre-amorphized regions and laser thermal annealing to crystallize the pre-amorphized regions and to activate the source/drain extensions.
摘要:
A method of manufacturing a semiconductor device includes forming a gate electrode over a substrate, implanting dopants into the substrate and activating the dopants using laser thermal annealing. During annealing, the laser and substrate are moved relative to one another, and the movement of the laser and the substrate relative to one another does not pause between and during activating one portion of the source/drain regions and activating another portion of the source/drain regions. Each pulse from the laser can respectively irradiate different portions of the source/drain regions, and a spot area of the laser is less than 50 millimeter2.
摘要:
Ultra-thin gate oxides are formed by exposing the upper surface of a substrate to a pulsed laser light beam in an atmosphere containing oxygen. Embodiments include exposing a silicon substrate to a pulsed laser light beam at a radiant fluence of 0.1 to 0.8 joules/cm2 for 1 to 10 nanoseconds to form a gate oxide layer having a thickness of 3 Å to 8 Å, e.g., 3 Å to 5 Å.
摘要:
A method of manufacturing a semiconductor device includes thermal annealing source/drain regions with a laser, measuring a depth of the source/drain regions, and adjusting a parameter of the laser used in the thermal annealing process. After the laser is adjusted, the source/drain regions are laser thermal annealed again until a desired depth of the source/drain regions is obtained. An apparatus for processing a semiconductor device includes a chamber, a laser, a measuring device, and a controller. The semiconductor device is positioned within the chamber for processing. The laser is used to laser thermal anneal the semiconductor device within the chamber. The measuring device measures a depth of source/drain regions in the semiconductor device when the semiconductor device is within the chamber, and the controller receives measurement information from the measuring device and adjusts parameters of the laser.
摘要:
The present invention enables the production of improved high-reliability, high-density semiconductor devices. The present invention provides the high-density semiconductor devices by decreasing the size of semiconductor device structures, such as gate channel lengths. Short-channel effects are prevented by the use of highly localized halo implant regions formed in the device channel. Highly localized halo implant regions are formed by a tilt pre-amorphization implant and a laser thermal anneal of the halo implant region.
摘要:
Dopant deactivation of source/drain extensions during silicidation is reduced by forming deep source/drain regions using a disposable dummy gate as a mask, forming metal silicide layers on the deep source/drain regions, removing the dummy gate and then forming the source/drain extensions using laser thermal annealing. Embodiments include angular ion implantation, after removing the dummy gate, to form spaced apart pre-amorphized regions, ion implanting to form source/drain extension implants extending deeper into the substrate than the pre-amorphized regions, and then laser thermal annealing to activate the source/drain extensions having a higher impurity concentration at the main surface of the substrate than deeper into the substrate. Subsequent processing includes forming sidewall spacers, a gate dielectric layer and then the gate electrode.
摘要:
A method of manufacturing a MOSFET semiconductor device includes forming a gate electrode over a substrate and a gate oxide between the gate electrode and the substrate. Inert dopants are then implanted within the substrate to form amorphized source/drain regions in the substrate extending to a first depth significantly greater than the intended junction depth. The amorphized source/drain regions are implanted with source/drain dopants such that the dopants extend into the substrate to a second depth less than the first depth, above and spaced apart from the end-of-range defect region created at the first depth by the amorphization process. Laser thermal annealing recrystallizes the amorphous regions, activates the source/drain regions and forms source/drain junctions. Because the recrystallization front velocity towards the substrate main surface is greater than the dopant atom velocity in the liquid substrate during laser thermal annealing, the junctions are not pushed down to the amorphous/crystalline silicon interface. Thus, end-of-range defects are located in a region below and spaced apart from the junctions, and the defects are not located in the activated source/drain regions. Junction leakage as a result of the end-of-range defects is thereby reduced.
摘要:
A method of manufacturing a MOSFET semiconductor device comprises forming a gate electrode over a substrate and a gate oxide between the gate electrode and the substrate; forming source/drain extensions in the substrate; forming first and second sidewall spacers; implanting dopants within the substrate to form source/drain regions in the substrate adjacent to the sidewalls spacers; laser thermal annealing to activate the source/drain regions; depositing a layer of nickel over the source/drain regions; and annealing to form a nickel silicide layer disposed on the source/drain regions. The source/drain extensions and sidewall spacers are adjacent to the gate electrode. The source/drain extensions can have a depth of about 50 to 300 angstroms, and the source/drain regions can have a depth of about 400 to 1000 angstroms. The annealing is at temperatures from about 350 to 500° C.
摘要:
A method is provided for eliminating uneven heating of substrate active areas during laser thermal annealing (LTA) due to variations in gate electrode density. Embodiments include adding dummy structures, formed simultaneously with the gate electrodes, to “fill in” the spaces between isolated gate electrodes, such that the spacing between the gate electrodes and the dummy structures is the same as the spacing between the densest array of device structures on the substrate surface. Since the surface features (i.e., the gate electrodes and the dummy structures) appear substantially uniform to the LTA laser, the laser radiation is uniformly absorbed by the substrate, and the substrate surface is evenly heated.