摘要:
Intraluminal stents and methods of manufacturing intraluminal stents are disclosed in which the stents have a plurality of recesses in the body of the stent, at least some of the recesses preferably providing a plurality of passageways between the inner and outer surfaces of the stent. The preferred stents are constructed of films on support structures having spaced apart elements, with the films having a thickness of between about 25 micrometers and about 400 micrometers. The stent can also be treated with an antithrombotic or a thrombolytic substance and, in some cases, the stents can incorporate therapeutic agents for delivery. The methods of manufacturing stents include forming the films using a solid particulate material that can be substantially removed after the film is formed, thereby forming the recesses and corresponding passageways described above. In preferred methods, the solid particulate material is soluble in a solvent in which the film is substantially insolvent.
摘要:
A device for ablating tissue is provided. The device comprises a conductive element with a channel for irrigating fluid formed therein, which is in contact with a non-conductive microporous interface. All or a portion of the interface may be removable. When the interface is removed, a portion of the conductive element is exposed for use in ablating tissue. Methods of using the device and of removing the interface are also provided.
摘要:
The present invention provides an electrophoretic system, apparatus, and method of use thereof for the preparation of a tissue-derived bioprosthesis.
摘要:
An apparatus designed to test blood, blood contacting biomaterials and devices such as materials and surface-modified materials; vascular grafts, stents, heart valves, catheters, leads, etc., for blood and material responses in vitro under physiological blood flow conditions. The apparatus consists of a stepper-motor driven circular disc(s), upon which a test vehicle, containing either the test materials, coating or device, is mounted. The test vehicle itself consists of a circular, closed-loop of polymer tubing containing a check valve.
摘要:
A method for making a medical device having at least one biomolecule immobilized on a substrate surface is provided. One method of the present invention includes immobilizing a biomolecule comprising an unsubstituted amide moiety on a biomaterial surface. Another method of the present invention includes immobilizing a biomolecule on a biomaterial surface comprising an unsubstituted amide moiety. Still another method of the present invention may be employed to crosslink biomolecules comprising unsubstituted amide moieties immobilized on medical device surfaces. Additionally, one method of the present invention may be employed to crosslink biomolecules comprising unsubstituted amide moieties in solution, thereby forming a crosslinked biomaterial or a crosslinked medical device coating.
摘要:
A device for ablating tissue is provided. The device comprises a conductive element with a channel for irrigating fluid formed therein, which is in contact with a non-conductive microporous interface. All or a portion of the interface may be removable. When the interface is removed, a portion of the conductive element is exposed for use in ablating tissue. Methods of using the device and of removing the interface are also provided.
摘要:
Methods are provided for forming a coating of an immobilized biomolecule on a surface of a medical device to impart improved biocompatibility for contacting tissue and bodily fluids. A biomolecule such as a glycoprotein having an unsubstituted amide moiety is combined with an amine forming agent to form an amine-functional biomolecule. The amine-functional biomolecule is combined with a medical device surface having a chemical moiety such as aldehyde, epoxide, isocyanate, 1,2-dicarbonyl, phosphate, sulphate or carboxylate to form a chemical bond immobilizing the biomolecule on the surface. The chemical bond may be combined with a reducing agent or a stabilizing agent. The aldehyde moiety may be formed by combining a periodate with a 2-aminoalcohol moiety or a 1,2-dihydroxy moiety. Alternatively, an amine-functional medical device surface is combined with a biomolecule having a chemical moiety that reacts with an amine moiety. In another embodiment, the amine-functional biomolecule is converted to a guanidino-functional biomolecule and is combined with a medical device surface having a chemical moiety that reacts with a guanidino moiety. Alternatively, an amine-functional medical device surface is converted to a guanidino-functional surface and is combined with a biomolecule having the chemical moiety. Biomolecules may be crosslinked by combining the amine-functional or guanidino-functional biomolecule with a biomolecule having a chemical moiety that forms a chemical bond with an amine moiety or a guanidino moiety.
摘要:
A vascular graft having a pleated circumference accommodates blood pressure changes with minimal change in internal surface area. A highly compliant graft may be made from a wide variety of polymers including non-elastomeric materials.
摘要:
A vascular graft with improved endothelial cell adhesion can be achieved on a fluoropolymer surface of a vascular graft by treating the fluoropolymer with a plasma in the presence of a non-polymerizing gas capable of providing the fluoropolymer with anionic groups and binding a protein to the treated fluoropolymer. In a preferred embodiment, the fluoropolymer surface is a plasma deposited fluoropolymer. Also in a preferred embodiment, autologous endothelial cells are seeded onto the vascular graft prior to implantation of the vascular graft in the human body.
摘要:
Apparatus and methods for seeding an implantable medical device, such as a vascular prosthesis, with cells, such as endothelial cells, are described. The invention supports techniques for seeding a luminal surface of the device with axial centrifugation. Cells are introduced in suspension into the lumen of the device. The introduction of the cells may occur after a blood centrifugation product, such as platelet-poor plasma, is applied to the luminal surface. After the cells are introduced, the device is then subjected to centrifugation around a longitudinal axis defined by the lumen. Axial centrifugation causes the cells to concentrate toward and adhere to the luminal surface. Shortly after axial centrifugation, the seeded device can be presented for implantation in a patient. The implantable medical device may be inserted into a protective sleeve prior to seeding the device with cells, and the sleeve may or may not be removed prior to implantation.