Abstract:
A method uses a memory that includes a plurality of non-volatile memory (NVM) cells; a plurality of word lines; a plurality of bit lines; and an amplifier having an inverting input, a non-inverting input, and an output; and a capacitance coupled to the inverting input includes. A reference is coupled to the non-inverting input. The output of the amplifier is coupled to the inverting input of the amplifier while the non-inverting input receives the reference. The output is decoupled from the inverting input to store a voltage on the inverting input of the amplifier. A non-volatile (NV) element of a first NVM cell of the plurality of NVM cells is coupled to the non-inverting input. An output signal representative of the state of the NVM cell is provided.
Abstract:
A method uses a memory that includes a plurality of non-volatile memory (NVM) cells; a plurality of word lines; a plurality of bit lines; and an amplifier having an inverting input, a non-inverting input, and an output; and a capacitance coupled to the inverting input includes. A reference is coupled to the non-inverting input. The output of the amplifier is coupled to the inverting input of the amplifier while the non-inverting input receives the reference. The output is decoupled from the inverting input to store a voltage on the inverting input of the amplifier. A non-volatile (NV) element of a first NVM cell of the plurality of NVM cells is coupled to the non-inverting input. An output signal representative of the state of the NVM cell is provided.
Abstract:
An operating voltage and reference current are adjusted in a memory device. At least a portion of an array of memory cells is preconditioned to an erased state using an erase verify voltage on word lines coupled to the memory cells and a first reference current in sense amplifiers coupled to bit lines for the array. A test reference current is set for the sense amplifiers. A bitcell gate voltage is set on the word lines to a present overdrive voltage. The at least a portion of the array is read. If any of the memory cells in the at least a portion of the array are read as being programmed, the present overdrive voltage is increased until none of the memory cells in the at least a portion of the array are read as being programmed.
Abstract:
Transitioning to all addresses of a memory array during BIST includes arranging the addresses as a matrix with rows of the matrix corresponding one to one to the plurality of addresses of the memory array and columns of the matrix corresponding one to one to the plurality addresses of the memory array. A column of a selected current location can correspond to a destination address of a memory transition. The destination addresses can identify a candidate row of the matrix which corresponds to the destination address. The candidate row can be different from a row of the current location. A next location can be determined that has not been recorded in the candidate row that has a minimum column distance from the column of the first location as compared to other locations that have not been recorded in the candidate row.
Abstract:
A non-volatile memory device includes an array of non-volatile (NV) memory cells organized in pairs. Each pair is included with a transistor to form a memory unit. Each unit is coupled to a bit line, a word line, and a pair of source lines. The NV elements are programmable to either a relatively high resistance or relatively low resistance and the particularly resistance is established, by converting one resistance type to the other or maintaining the existing resistance type the direction of current through the NV element. A bit is formed from two NV cells in different memory units which are programmed to different resistance types and thereby provide a differential pair from which the logic state of the bit can be determined.
Abstract:
A method and apparatus for generating an address sequence in a memory device is provided. The method includes providing a memory array having a set of unique addresses, storing one of a first subset of the set of unique addresses in a first storage element, storing one of a second subset of the set of unique addresses in a second storage element, and generating a sequence of addresses to test the memory array. The sequence of addresses are formed by alternately outputting addresses stored in the first storage element and the second storage element such that the sequence of addresses causes each unique address of the set to transition only once. The sequence of addresses can be used to efficiently test the memory array during a built-in self-test (BIST).
Abstract:
A non-volatile memory device includes an array of non-volatile memory cells. A memory cell in the array of memory cells includes a first resistive element including a first terminal and a second terminal, a second resistive element including a first terminal and a second terminal, and a select transistor including a gate electrode coupled to a word line, a first current electrode coupled to the first terminal of the first resistive element and the first terminal of the second resistive element, and a second current electrode coupled to a bit line. The second terminal of the first resistive element is coupled to a first source line, and the second terminal of the second resistive element is coupled to a second source line.