Abstract:
Provided is a pyroelectric sensor including: an Si substrate; a laminated portion in which a heat absorption layer formed of an inorganic material, a lower electrode, a piezoelectric film, and an upper electrode are laminated in this order from one surface side of the Si substrate on the one surface; and an optical filter that is provided at a position of the other surface of the Si substrate corresponding to the laminated portion and selectively transmits an infrared ray, in which an infrared ray incident to the laminated portion from the optical filter side through the Si substrate is sensed.
Abstract:
Provided are a piezoelectric element having high stability, which operates with high efficiency, and a method for manufacturing the piezoelectric element. The piezoelectric element (10) has a laminate structure in which a first electrode (14), a first piezoelectric film (16), a second electrode (18), an adhesion layer (20), an interlayer (22), a third electrode (24), a second piezoelectric film (26), and a fourth electrode (28) are laminated in this order on a silicon substrate (12). The interlayer (22) is formed of a material different from that of the second electrode (18) and has a thickness of 0.4 μm to 10 μm. A device having a diaphragm structure or a cantilever structure is formed by removing a part of the silicon substrate (12). The respective layers (14 to 28) laminated on the silicon substrate (12) can be formed using a thin film formation method represented by a vapor phase epitaxial method.
Abstract:
The piezoelectric film includes a perovskite oxide which is represented by General Formula P, A1+δB1-x-yNbxNiyOz General Formula P where A contains at least Pb, B contains at least Zr and Ti, and x and y respectively satisfy 0.1≤x≤0.3 and 0≤y≤0.75x. Although standard values of δ and z are δ=0 and z=3, these values may deviate from the standard values in a range in which a perovskite structure is capable of being obtained.
Abstract:
A piezoelectric element is obtained using a method including: preparing a first structure; preparing a second structure; disposing a first facing electrode layer of the first structure to face a first surface of a vibration plate substrate and bonding the first structure to the first surface of the vibration plate substrate; processing the vibration plate substrate into a vibration plate by polishing or etching a second surface of the vibration plate substrate to which the first structure is bonded; preparing a laminate structure by disposing a second facing electrode layer of the second structure to face an exposed surface of the vibration plate and bonding the second structure to the vibration plate; and removing at least a part of a first silicon substrate of the first structure and a second silicon substrate of the second structure from the laminate structure.
Abstract:
In a method for etching a piezoelectric film and a manufacturing method thereof, a piezoelectric film is formed on a substrate on which a lower electrode is formed, a metal film having a thickness of 20 nm to 300 nm is formed, a patterned resist film is formed, the metal film is etched with a first etchant to which the piezoelectric film has etching resistance, and the piezoelectric film is etched with a second etchant to which the metal film has etching resistance.
Abstract:
A piezoelectric device includes: a substrate; a lower electrode provided on a substrate; a piezoelectric film provided by being laminated on the lower electrode, the piezoelectric film being formed of lead zirconate titanate (PZT) containing 6 at % or more in atomic composition percentage of at least one type of metal element selected from V group and VI group; an oxide electrode layer provided by being laminated on the piezoelectric film; a first metal electrode layer containing an oxidation-resistant precious metal provided by being laminated on the oxide electrode layer; a second metal electrode layer provided by being laminated on the first metal electrode layer; and a wire connected to the second metal electrode layer.
Abstract:
The present invention provides an etching solution for etching a piezoelectric film having a thin film of a perovskite structure grown to be a columnar structure on a lower electrode formed on a substrate and having a pyrochlore layer at an interface thereof with the lower electrode, wherein the etching solution comprises at least: a hydrofluoric acid type chemical comprising at least any of buffered hydrofluoric acid (BHF), hydrogen fluoride (HF), and diluted hydrofluoric acid (DHF); and nitric acid, and has a concentration by weight of hydrochloric acid of less than 10% and a weight ratio of hydrochloric acid to nitric acid (hydrochloric acid/nitric acid) of 1/4 or less. The present invention also provides a method of manufacturing a piezoelectric element to carry out etching using the etching solution.
Abstract:
A piezoelectric device includes: a substrate; a first electrode which is layered over the substrate; a first piezoelectric film which is layered over the first electrode; a metal oxide film which is layered over the first piezoelectric film; a metal film which is layered over the metal oxide film; a second piezoelectric film which is layered over the metal film; and a second electrode which is layered over the second piezoelectric film.
Abstract:
A method of manufacturing a power generation element includes a first step of disposing a support unit that supports a vibration unit in one end portion of the vibration unit in one direction, and disposing a weight unit in the other end portion of the vibration unit in the one direction in a substrate including the vibration unit capable of vibrating, a second step of disposing a piezoelectric unit that generates power due to vibration in a portion of the vibration unit on an opposite side from the support unit side in a thickness direction of the substrate after the support unit and the weight unit are disposed in the vibration unit, and a third step of extracting a power generation element from the substrate by cutting an outer edge of the vibration unit in the thickness direction of the substrate after the piezoelectric unit is disposed in the vibration unit.
Abstract:
A piezoelectric element includes: a titanium-containing adhesion layer, a lower electrode, a PZT-based piezoelectric film, and an upper electrode, which are sequentially provided on a silicon substrate, in which the lower electrode includes a columnar structure film consisting of a large number of columnar crystals which are grown from a surface of the titanium-containing adhesion layer and have a platinum group element as a primary component, and an adhesion layer component diffused from the titanium containing adhesion layer and oxygen diffused from the piezoelectric film side, which are present in the columnar structure film, and a main column diameter of the columnar crystal of the columnar structure film is 50 nm or more and 200 nm or less.