Abstract:
A voltage controlled oscillator outputs an output signal whose frequency corresponds to inputted control voltage. A distributor distributes the output signal outputted from the voltage controlled oscillator. A plurality of injection-locked oscillators regulate self-oscillation frequencies according to the above frequency and output signals obtained by frequency-multiplying signals distributed by the distributor. A combiner combines and outputs the signals outputted from the plurality of injection-locked oscillators. This makes it possible to increase output power while preventing an operating band from narrowing.
Abstract:
A termination circuit includes a pMOS transistor configured to have a source connected with a signal terminal outputting or inputting a transmission signal, a drain connected with a grounding line, and a gate receiving a control signal, the pMOS transistor being turned on when enabling a characteristic impedance matching function and being turned off when disabling the matching function; and an inductor and a capacitor configured to be connected with the signal terminal for matching characteristic impedance.
Abstract:
A high frequency module includes a metal housing including a waveguide, and a package unit that includes a back short positioned on an extension of the waveguide, a semiconductor chip, and an antenna coupler positioned between the waveguide and the back short and in which the back short and the semiconductor chip are integrated by resin and the antenna coupler and the semiconductor chip are electrically coupled with each other by a redistribution line.
Abstract:
A high-frequency module includes an integrated body including a semiconductor chip and a reflector, the semiconductor and the reflector being integrated by a resin; an antenna provided with a space from the reflector; and a rewiring layer provided on the surface of the integrated body, the rewiring layer including a rewiring line electrically coupling the semiconductor chip to the antenna. Further, a method for manufacturing a high-frequency module, the method includes forming an integrated body by integrating a semiconductor chip with a reflector by a resin; and forming a rewiring layer on the surface of the integrated body, the rewiring layer including a rewiring line electrically coupling the semiconductor chip to an antenna provided with a space from the reflector.
Abstract:
A high-frequency module includes an integrated body including a semiconductor chip and a reflector, the semiconductor and the reflector being integrated by a resin; an antenna provided with a space from the reflector; and a rewiring layer provided on the surface of the integrated body, the rewiring layer including a rewiring line electrically coupling the semiconductor chip to the antenna. Further, a method for manufacturing a high-frequency module, the method includes forming an integrated body by integrating a semiconductor chip with a reflector by a resin; and forming a rewiring layer on the surface of the integrated body, the rewiring layer including a rewiring line electrically coupling the semiconductor chip to an antenna provided with a space from the reflector.
Abstract:
A PLL device includes a variable frequency oscillator and a frequency divider section. The variable frequency oscillator varies an oscillation frequency in response to a control signal including information on a phase difference between a reference signal and a frequency division signal and oscillates an output signal obtained by multiplying a frequency of the reference signal. The frequency divider section frequency-divides the output signal to generate the frequency division signal. An injection locked frequency divider is arranged in the frequency divider section, the control signal is input to the injection locked frequency divider, and the operation frequency of the injection locked frequency divider is controlled by the control signal.
Abstract:
A semiconductor device includes a first electrode formed on a substrate, the first electrode being a first electrical potential; and a second electrode formed on the first electrode, the second electrode including a signal wiring that transmits a signal and a planar electrode part with a prescribed area. A shape of the first electrode corresponding to the planar electrode part is made into a slit shape such that a longitudinal direction of a slit is parallel to a direction in which the signal proceeds in the planar electrode part.
Abstract:
A termination circuit includes a pMOS transistor configured to have a source connected with a signal terminal outputting or inputting a transmission signal, a drain connected with a grounding line, and a gate receiving a control signal, the pMOS transistor being turned on when enabling a characteristic impedance matching function and being turned off when disabling the matching function; and an inductor and a capacitor configured to be connected with the signal terminal for matching characteristic impedance.
Abstract:
A semiconductor device includes a first electrode formed on a substrate, the first electrode being a first electrical potential; and a second electrode formed on the first electrode, the second electrode including a signal wiring that transmits a signal and a planar electrode part with a prescribed area. A shape of the first electrode corresponding to the planar electrode part is made into a slit shape such that a longitudinal direction of a slit is parallel to a direction in which the signal proceeds in the planar electrode part.
Abstract:
A voltage controlled oscillator outputs an output signal whose frequency corresponds to inputted control voltage. A distributor distributes the output signal outputted from the voltage controlled oscillator. A plurality of injection-locked oscillators regulate self-oscillation frequencies according to the above frequency and output signals obtained by frequency-multiplying signals distributed by the distributor. A combiner combines and outputs the signals outputted from the plurality of injection-locked oscillators. This makes it possible to increase output power while preventing an operating band from narrowing.