Abstract:
A method of designing a semiconductor laser device includes: controlling a distance between the output-side reflection unit and the second reflection unit and an effective optical feedback κ to the semiconductor laser element, the effective optical feedback κ defined by a below-presented formula (1) including a circulating time τ of the light in the semiconductor laser element, a reflectivity R1 of the output-side reflection unit, and a reflectivity R2 of the second reflection unit; selecting a semiconductor laser device in which an LFF period is equal to or smaller than 20 ns as a semiconductor laser device in which high speed switching occurs between an FBG mode and an FP mode; and using the selected semiconductor laser device as an semiconductor laser device oscillating in a coherent collapse mode. κ=(1/τ)×(1−R1)×(R2/R1)1/2 (1)
Abstract:
An optical semiconductor device outputting a predetermined wavelength of laser light includes: a quantum well active layer positioned between a p-type cladding layer and an n-type cladding layer in thickness direction; a separate confinement heterostructure layer positioned between the quantum well active layer and the n-type cladding layer; and an electric-field-distribution-control layer positioned between the separate confinement heterostructure layer and the n-type cladding layer and configured by at least two semiconductor layers having band gap energy greater than band gap energy of a barrier layer constituting the quantum well active layer.
Abstract:
An optical semiconductor device outputting a predetermined wavelength of laser light includes a quantum well active layer positioned between a p-type cladding layer and an n-type cladding layer in thickness direction. The optical semiconductor device includes a separate confinement heterostructure layer positioned between the quantum well active layer and the n-type cladding layer. The optical semiconductor device further includes an electric-field-distribution-control layer positioned between the separate confinement heterostructure layer and the n-type cladding layer and configured by at least two semiconductor layers having band gap energy greater than band gap energy of a barrier layer constituting the quantum well active layer. The optical semiconductor device is applied to a ridge-stripe type laser.
Abstract:
An optical semiconductor device outputting a predetermined wavelength of laser light includes a quantum well active layer positioned between a p-type cladding layer and an n-type cladding layer in thickness direction. The optical semiconductor device includes a separate confinement heterostructure layer positioned between the quantum well active layer and the n-type cladding layer. The optical semiconductor device further includes an electric-field-distribution-control layer positioned between the separate confinement heterostructure layer and the n-type cladding layer and configured by at least two semiconductor layers having band gap energy greater than band gap energy of a barrier layer constituting the quantum well active layer. The quantum well active layer is doped with 0.3 to 1×1018/cm3 of n-type impurity.
Abstract:
A distributed feedback (DFB) laser outputting a predetermined wavelength of laser light includes a quantum well active layer positioned between a p-type cladding layer and an n-type cladding layer in thickness direction. The DFB laser includes a separate confinement heterostructure layer positioned between the quantum well active layer and then-type cladding layer. The DFB laser includes an electric-field-distribution-control layer positioned between the separate confinement heterostructure layer and then-type cladding layer and configured by at least two semiconductor layers having band gap energy greater than band gap energy of a barrier layer constituting the quantum well active layer. The DFB laser has a function to select a specific wavelength by returning a specific wavelength in the wavelength-variable laser.
Abstract:
An optical semiconductor device outputting a predetermined wavelength of laser light includes a quantum well active layer positioned between a p-type cladding layer and an n-type cladding layer in thickness direction. The optical semiconductor device includes a separate confinement heterostructure layer positioned between the quantum well active layer and the n-type cladding layer. The optical semiconductor device further includes an electric-field-distribution-control layer positioned between the separate confinement heterostructure layer and the n-type cladding layer and configured by at least two semiconductor layers having band gap energy greater than band gap energy of a barrier layer constituting the quantum well active layer. The optical semiconductor device is applied to a ridge-stripe type laser.
Abstract:
A wavelength-variable laser outputting a predetermined wavelength of laser light includes: a quantum well active layer positioned between a p-type cladding layer and an n-type cladding layer in thickness direction; a separate confinement heterostructure layer positioned between the quantum well active layer and the n-type cladding layer; and an electric-field-distribution-control layer positioned between the separate confinement heterostructure layer and the n-type cladding layer and configured by at least two semiconductor layers having band gap energy greater than band gap energy of a barrier layer constituting the quantum well active layer.
Abstract:
An optical semiconductor device outputting a predetermined wavelength of laser light includes: a quantum well active layer positioned between a p-type cladding layer and an n-type cladding layer in thickness direction; a separate confinement heterostructure layer positioned between the quantum well active layer and the n-type cladding layer; and an electric-field-distribution-control layer positioned between the separate confinement heterostructure layer and the n-type cladding layer and configured by at least two semiconductor layers having band gap energy greater than band gap energy of a barrier layer constituting the quantum well active layer.
Abstract:
An optical semiconductor device outputting a predetermined wavelength of laser light includes: a quantum well active layer positioned between a p-type cladding layer and an n-type cladding layer in thickness direction; a separate confinement heterostructure layer positioned between the quantum well active layer and the n-type cladding layer; and an electric-field-distribution-control layer positioned between the separate confinement heterostructure layer and the n-type cladding layer and configured by at least two semiconductor layers having band gap energy greater than band gap energy of a barrier layer constituting the quantum well active layer.