Abstract:
A lead frame for an optical semiconductor device, having a reflection layer at least on one side or each side of the outermost surface of a substrate, partially or entirely, in which the reflection layer has, on the outermost surface at least in a region where light emitted by an optical semiconductor element is reflected, a microstructure with at least the surface thereof having been mechanically deformed, which is converted from a plating microstructure formed of a metal or an alloy thereof; a method of producing the same, and an optical semiconductor device having the same.
Abstract:
An electrical contact material (10) having: a conductive substrate (1) formed from copper or a copper alloy; a first intermediate layer (2) provided on the conductive substrate (1); a second intermediate layer (3) provided on the first intermediate layer (2); and an outermost layer (4) formed from tin or a tin alloy and provided on the second intermediate layer (3), wherein the first intermediate layer (2) is constructed as one layer of grains extending from the conductive substrate (1) side to the second intermediate layer (3) side, and wherein, in the first intermediate layer (2), the density of grain boundaries (5b) extending in a direction in which the angle formed by the grain boundary in interest and the interface between the conductive substrate and the first intermediate layer is 45° or greater, is 4 μm/μm2 or less; a method of producing the same; and a terminal.
Abstract:
The surface-treated material (10) according to the present invention is a surface-treated material including an electroconductive substrate (1) and a surface treatment coating film (2) including at least one metal layer formed above the electroconductive substrate (1), wherein a lowermost metal layer (21), as a metal layer included in the at least one metal layer and formed above the electroconductive substrate (1), is made of nickel, nickel alloy, cobalt, cobalt alloy, copper, or copper alloy, the surface-treated material includes an intervening layer (3) between the electroconductive substrate (1) and the surface treatment coating film (2), the intervening layer (3) containing a metal component of the electroconductive substrate (1), a metal component of the surface treatment coating film (2), and an oxygen component, and the mean thickness of the intervening layer (3) is in the range of 1.00 nm or larger and 40 nm or smaller as measured in the vertical cross-section of the surface-treated material.
Abstract:
The present invention provides: a surface-treated material that can simply and in a short time period form a surface treatment film having an adequate adhesiveness particularly on an electroconductive substrate which is mainly formed of a base metal having a large ionization tendency and is considered to resist having a sound plating film formed thereon; and a component produced by using the same.A surface-treated material (10) of the present invention comprises an electroconductive substrate (1) and a surface treatment film (2) formed of at least one or more layers of metal layers (3 and 4) which are formed on the electroconductive substrate (1), and among the at least one or more layers of metal layers (3 and 4), a lowermost metal layer (3) which is directly formed on the electroconductive substrate (1) comprises a plurality of metal-buried portions (3a) that are scattered in the electroconductive substrate (1) and continuously extend from a surface of the electroconductive substrate (1) toward an inside thereof.
Abstract:
A surface-treated material (10) according to the present invention comprises an electroconductive substrate (1) and a surface treatment film (2) formed of at least one or more layers of metal layers (3 and 4) which are formed on the electroconductive substrate (1), wherein among the at least one or more layers of metal layers (3 and 4), the lowermost metal layer (3) which is directly formed on the electroconductive substrate (1) comprises a plurality of metal-buried portions (3a) that are scattered in the electroconductive substrate (1), branch from a surface of the electroconductive substrate (1) and widely extend toward the inside thereof, and as a vertical cross section of the surface-treated material (10) is viewed, in which at least one of the metal-buried portions (3a) exists in the electroconductive substrate (1), an average value of an area ratio of the metal-buried portion (3a) occupying the predetermined observation region of the electroconductive substrate (1) is in a range of 5% or more and 50% or less.
Abstract:
A surface-treated material of the present disclosure has a conductive substrate, and a surface treatment film which includes at least one layer of metal layers and is formed on the conductive substrate. The surface treatment film is a plating film. The surface treatment film is formed on a whole surface or a part of the conductive substrate through a zinc-containing layer that contains zinc as a main component and has a thickness of 50 nm or less, or is formed on the conductive substrate without through the zinc-containing layer. The surface-treated material has a ratio of a contact area to a test area of 85% or more as measured according to a tape test method defined in JIS H 8504: 1999.