摘要:
A liner for a die body is presented. The liner includes a flexible base material characterized in that reinforcements with lower stretchability compared to the base material are bonded along the extent of the liner. A tool which includes the liner is also provided. The reinforcements may include glass fibers or carbon fibers.
摘要:
An investment casting process for a hollow component such as a gas turbine blade utilizing a ceramic core (10) that is cast in a flexible mold (24) using a low pressure, vibration assisted casting process. The flexible mold is cast from a master tool (14) machined from soft metal using a relatively low precision machining process, with relatively higher precision surfaces being defined by a precision formed insert (22) incorporated into the master tool. A plurality of identical flexible molds may be formed from a single master tool in order to permit the production of ceramic cores at a desired rate with a desired degree of part-to-part precision.
摘要:
A hollow turbine engine component with complex internal features can include a first region and a second, high resolution region. The first region can be defined by a first ceramic core piece formed by any conventional process, such as by injection molding or transfer molding. The second region can be defined by a second ceramic core piece formed separately by a method effective to produce high resolution features, such as tomo lithographic molding. The first core piece and the second core piece can be joined by interlocking engagement that once subjected to an intermediate thermal heat treatment process thermally deform to form a three dimensional interlocking joint between the first and second core pieces by allowing thermal creep to irreversibly interlock the first and second core pieces together such that the joint becomes physically locked together providing joint stability through thermal processing.
摘要:
A modular airfoil assembly (200) and related method for interlocking components of an airfoil structure (210) including a platform (220), an airfoil (210) having a shoulder (230) and a stem (232) extending outward from the shoulder. A ring element (100) positioned against the stem (232) secures the shoulder (230) against the platform (210). First and second members (100a, 100b) of the ring element (100) are bonded together with a portion (128j) of a surface (112a) of the second member (100b) extending within and bonded to a portion (128i) of a surface (112b) of the first member (100a).
摘要:
A cooling channel (36, 36B) cools an exterior surface (40 or 42) or two opposed exterior surfaces (40 and 42). The channel has a near-wall inner surface (48, 50) with a width (W1). Interior side surfaces (52, 54) may converge to a reduced channel width (W2). The near-wall inner surface (48, 50) may have fins (44) aligned with a coolant flow (22). The fins may highest at mid-width of the near-wall inner surface. A two-sided cooling channel (36) may have two near-wall inner surfaces (48, 50) parallel to two respective exterior surfaces (40, 42), and may have an hourglass shaped transverse sectional profile. The tapered channel width (W1, W2) and the fin height profile (56A, 56B) increases cooling flow (22) into the corners (C) of the channel for more uniform and efficient cooling.
摘要:
Methodology and tooling arrangements for increasing interlaminar shear strength in a ceramic matrix composite (CMC) structure are provided. The CMC structure may be formed by a plurality of layers of ceramic fibers disposed between a top surface and a bottom surface of the composite structure. A plurality of surface recesses are formed on the surfaces of the structure. For example, each of the surfaces of the composite structure may be urged against corresponding top and bottom surfaces of a tool having a plurality of asperities. The plurality of surface recesses causes an out-of-plane sub-surface fiber displacement along an entire thickness of the structure, and the sub-surface fiber displacement is arranged to increase an interlaminar shear strength of the structure.
摘要:
A stacked laminate component for a turbine engine that may be used as a replacement for one or more metal components is provided. The stacked laminate component can have a body formed by a process of stacking and laminating layers to define a radially inner surface along the hot gas path. The layers can be substantially orthogonal to the radially inner surface. The layers can be at least a first layer of a first material and a second layer of a second material. At least the first material is a ceramic matrix composite. The second material can have a higher thermal conductivity or a higher creep strength than the first material.
摘要:
A ceramic ring segment for a turbine engine that may be used as a replacement for one or more metal components. The ceramic ring segment may be formed from a plurality of ceramic plates, such as ceramic matrix composite plates, that are joined together using a strengthening mechanism to reinforce the ceramic plates while permitting the resulting ceramic article to be used as a replacement for components for turbine systems that are typically metal, thereby taking advantage of the properties provided by ceramic materials. The strengthening mechanism may include a ceramic matrix composite overwrap or plurality of overwraps designed to help prevent delamination of the ceramic plates when the ceramic article is in use by placing the plates in compression.
摘要:
A hybrid ceramic matrix composite (CMC) structure 10 and method for fabricating such an structure are provided. A CMC substrate 12 includes layers 16, 18, 20 of ceramic fibers. Fugitive objects 22 are disposed on at least one of the plurality of layers prior to laying a subsequent layer of ceramic fibers. An outer surface of the subsequent layer influences a shape of the outer surface of the substrate by defining protuberances 24 on the outer surface of the substrate where respective cavities 26 are formed beneath respective protuberances upon dissipation of the fugitives. A liquefied ceramic coating 34 is deposited on the outer surface of the ceramic substrate to fill the cavities. When the ceramic coating is cured to a solidified state, the cavities containing the solidified coating constitute an anchoring arrangement between the ceramic substrate and the ceramic coating.
摘要:
A stack of substantially parallel ceramic plates (22) separated and interconnected by ceramic spacers (26, 27) forming a seal structure (20) with a length (L), a width (W), and a thickness (T). The spacers are narrower in width than the plates, and may be laterally offset from spacers in adjacent rows to form a space (28) in a row that aligns with a spacer in another adjacent row. An adjacent plate bends into the space when the seal structure is compressed in thickness. The spacers may have gaps (60, 62) forming a stepped or labyrinthine cooling flow path (66) within the seal structure. The spacers of each row may vary in lateral separation, thus providing a range of compressibility that varies along the width of the seal structure.