Abstract:
In a non-volatile memory, a method of performing a sensing operation to read a non-volatile (NV) element includes a first and a second phase. During the first phase, the NV element is coupled via a sense path transistor to a first capacitive element at a first input of an amplifier stage and a reference cell is coupled via a reference sense path transistor to a second capacitive element at a second input of the amplifier stage. During the second phase, the NV element is coupled via the sense path transistor to the second capacitive element and the reference cell is coupled via the reference sense path transistor to the first capacitive element. During the first phase, the first and second capacitive elements are initialized to voltages representative of states of the NV element and reference cell, respectively. During the second phase, the voltage differential between the two voltages is amplified.
Abstract:
A charge pump comprises one or more pump stages for providing a negative boosted output voltage. Each of the one or more pump stages comprises a P-channel transistor formed in an isolated P-well and an N-channel transistor coupled in series with the P-channel transistor. Forming the P-channel transistor in the isolated P-well essentially eliminates a raised threshold voltage due to body effect.
Abstract:
Systems and methods for voltage ramp-up protection. In an illustrative, non-limiting embodiment, a method may include monitoring at least one of a first node or a second node, the first node configured to receive a first voltage greater than a second voltage present at a second node, and, in response to a slew rate of the first voltage creating a sneak condition between the first node and the second node, counteracting the sneak condition. For example, the sneak condition may favor an excess current to flow from the first node to the second node. In some cases, counteracting the sneak condition may include maintaining the second voltage below at or below a predetermined value.
Abstract:
This disclosure describes a design tool that iteratively performs simulation sets on an integrated circuit design, each corresponding to a different hierarchical level with each of the simulation sets producing a different set of simulation results. Each of the simulation sets utilizes a different set of local parameter values that include extreme instance local parameter values based on the set of simulation results of a preceding simulation set. The design tool generates a set of hierarchically aggregated simulation results based upon the last set of simulation results and global parameters, and modifies the integrated circuit design based upon a yield estimation that is determined from comparing the set of hierarchically aggregated simulation results to specification requirements that correspond to the integrated circuit design.
Abstract:
This disclosure describes a design tool that iteratively performs simulation sets on an integrated circuit design, each corresponding to a different hierarchical level with each of the simulation sets producing a different set of simulation results. Each of the simulation sets utilizes a different set of local parameter values that include extreme instance local parameter values based on the set of simulation results of a preceding simulation set. The design tool generates a set of hierarchically aggregated simulation results based upon the last set of simulation results and global parameters, and modifies the integrated circuit design based upon a yield estimation that is determined from comparing the set of hierarchically aggregated simulation results to specification requirements that correspond to the integrated circuit design.
Abstract:
A voltage switch for handling negative voltages includes an input terminal coupled to a voltage that is greater than a voltage rating of oxide in the voltage switch, a top capacitor plate pre-charge module including three cascoded p-channel transistors coupled between a supply voltage and a top plate of a capacitor, a bottom capacitor plate pre-charge module including two cascoded n-channel transistors coupled between a bottom plate of the capacitor and ground, and an output voltage module including an output terminal and four cascoded n-channel transistors with control electrodes of a first and fourth of the cascoded n-channel transistors coupled to a boost node. Control electrodes of a second and third of the cascoded n-channel transistors coupled to the top plate of the capacitor. A voltage switch for positive voltages is also disclosed.
Abstract:
A negative charge pump is responsive to a pump enable signal. A voltage controlled current source provides a current. A resistor is coupled between a node from the voltage controlled current source and a negative charge output from the negative charge pump. A capacitor is placed in parallel with the resistor. A comparator generates the pump enable signal to control the negative charge pump. The comparator is coupled to the resistor and the capacitor and measures an IR drop thereacross and compares this measurement against a reference threshold. A level of the pump enable signal can be variable by tuning an amount of resistance of the resistor or capacitor or adjusting the reference threshold. A memory can be driven by a method of the negative charge pump.
Abstract:
An integrated circuit (IC) device includes a static random access memory (SRAM) array, and a resistive memory (resistive memory) array. A first set of programmable resistive elements in the resistive memory array are used to store data from memory cells in the SRAM array. Sense amplifier circuitry is couplable to the SRAM array and the resistive memory array. An arbiter is configured to assert an resistive memory enable signal to couple the sense amplifier circuitry to the resistive memory array and decouple the sense amplifier circuitry from the SRAM array during a resistive memory read operation, and to couple the sense amplifier to the SRAM array and decouple the sense amplifier circuitry from the resistive memory array during an SRAM read operation.
Abstract:
A nonvolatile memory includes a memory array having a plurality of memory cells, a select gate driver configured to provide a select gate voltage to a select gate of a first memory cell of the plurality of memory cells, and a control gate driver configured to use the select gate voltage to provide a control gate voltage to a control gate of a second memory cell of the plurality of memory cells.