Abstract:
A device includes a plurality of trenches and fins defined in a substantially un-doped layer of semiconducting material, a gate insulation layer positioned on the fins and on the bottom of the trenches, a gate electrode and a device isolation structure. One method disclosed herein involves identifying a top width of each of a plurality of fins and a depth of a plurality of trenches to be formed in a substantially un-doped layer of semiconducting material, wherein, during operation, the device is adapted to operate in at least three distinguishable conditions depending upon a voltage applied to the device, performing at least one process operation to define the trenches and fins in the layer of semiconducting material, forming a gate insulation layer on the fins and on a bottom of the trenches and forming a gate electrode above the gate insulation layer.
Abstract:
One method includes forming first and second spaced-apart trenches extending at least partially into a semiconducting substrate defining a fin structure for the device, forming a stress-inducing material having a first type of stress in the first trench, forming a second stress-inducing material in the second trench, the second stress-inducing material having a second stress that is a different than the first type of stress, and forming a gate structure around a portion of the fin structure. One device includes first and second spaced-apart trenches in a semiconducting substrate defining at least a portion of a fin for the device, a stress-inducing material having a first type of stress in the first trench, a second stress-inducing material in the second trench, the second stress-inducing material having a second stress that is a different type than the first stress, and a gate structure around a portion of the fin structure.
Abstract:
A device includes a plurality of trenches and fins defined in a substantially un-doped layer of semiconducting material, a gate insulation layer positioned on the fins and on the bottom of the trenches, a gate electrode and a device isolation structure. One method disclosed herein involves identifying a top width of each of a plurality of fins and a depth of a plurality of trenches to be formed in a substantially un-doped layer of semiconducting material, wherein, during operation, the device is adapted to operate in at least three distinguishable conditions depending upon a voltage applied to the device, performing at least one process operation to define the trenches and fins in the layer of semiconducting material, forming a gate insulation layer on the fins and on a bottom of the trenches and forming a gate electrode above the gate insulation layer.
Abstract:
One method includes forming first and second spaced-apart trenches extending at least partially into a semiconducting substrate defining a fin structure for the device, forming a stress-inducing material having a first type of stress in the first trench, forming a second stress-inducing material in the second trench, the second stress-inducing material having a second stress that is a different than the first type of stress, and forming a gate structure around a portion of the fin structure. One device includes first and second spaced-apart trenches in a semiconducting substrate defining at least a portion of a fin for the device, a stress-inducing material having a first type of stress in the first trench, a second stress-inducing material in the second trench, the second stress-inducing material having a second stress that is a different type than the first stress, and a gate structure around a portion of the fin structure.
Abstract:
A device includes a plurality of trenches and fins defined in a substantially un-doped layer of semiconducting material, a gate insulation layer positioned on the fins and on the bottom of the trenches, a gate electrode and a device isolation structure. One method disclosed herein involves identifying a top width of each of a plurality of fins and a depth of a plurality of trenches to be formed in a substantially un-doped layer of semiconducting material, wherein, during operation, the device is adapted to operate in at least three distinguishable conditions depending upon a voltage applied to the device, performing at least one process operation to define the trenches and fins in the layer of semiconducting material, forming a gate insulation layer on the fins and on a bottom of the trenches and forming a gate electrode above the gate insulation layer.
Abstract:
A method is provided for forming SRAM cells with low energy implants. Embodiments include forming deep trenches in a silicon substrate; forming a deep n-well or deep p-well around a bottom of each deep trench; filling the deep trenches with oxide; forming a first or second shallow trench between each pair of adjacent deep trenches; forming a first p-well or first n-well, respectively, above each deep n-well or p-well; forming a second n-well at a bottom of each first shallow trench; forming a p+ region above each second n-well on each side of each first shallow trench; filling the first shallow trenches with oxide; forming a second p-well at a bottom of each second shallow trench; filling the second shallow trenches with oxide; forming a n+ region above each second p-well on each side of each second shallow trench.
Abstract:
A method and device are provided for etching and replacing silicon fins in connection with a FinFET integration process. Embodiments include providing a first plurality and a second plurality of silicon fins on a silicon wafer with an oxide between adjacent silicon fins; forming a first nitride liner on an upper surface of the first plurality of silicon fins and the oxide therebetween; etching the second plurality of silicon fins, forming trenches; removing the first nitride liner; depositing a second nitride liner on an upper surface of the first plurality of silicon fins and the oxide therebetween and in the trenches; removing the second nitride liner down to the upper surface of the first plurality of silicon fins; and recessing the oxide.
Abstract:
A device includes a plurality of trenches and fins defined in a substantially un-doped layer of semiconducting material, a gate insulation layer positioned on the fins and on the bottom of the trenches, a gate electrode and a device isolation structure. One method disclosed herein involves identifying a top width of each of a plurality of fins and a depth of a plurality of trenches to be formed in a substantially un-doped layer of semiconducting material, wherein, during operation, the device is adapted to operate in at least three distinguishable conditions depending upon a voltage applied to the device, performing at least one process operation to define the trenches and fins in the layer of semiconducting material, forming a gate insulation layer on the fins and on a bottom of the trenches and forming a gate electrode above the gate insulation layer.
Abstract:
Hierarchical layout versus schematic comparison with extraneous device elimination is provided. This includes obtaining a hierarchical layout netlist for a circuit design, the hierarchical layout netlist grouping arrayed devices of the circuit design into blocks repeated at a top level of a hierarchy of the hierarchical layout netlist. A modified hierarchical layout netlist defining active devices and connections thereof to top level pads of the circuit design is generated, in which extraneous devices are selectively removed from the obtained hierarchical layout netlist. The modified hierarchical layout netlist is verified against an input schematic netlist defining active devices of the circuit design and connections thereof to pads of the circuit design.
Abstract:
A method is provided for forming SRAM cells with low energy implants. Embodiments include forming deep trenches in a silicon substrate; forming a deep n-well or deep p-well around a bottom of each deep trench; filling the deep trenches with oxide; forming a first or second shallow trench between each pair of adjacent deep trenches; forming a first p-well or first n-well, respectively, above each deep n-well or p-well; forming a second n-well at a bottom of each first shallow trench; forming a p+ region above each second n-well on each side of each first shallow trench; filling the first shallow trenches with oxide; forming a second p-well at a bottom of each second shallow trench; filling the second shallow trenches with oxide; forming a p+ region above each second n-well on each side of each first shallow trench; and forming an n+ region above each second p-well.