Abstract:
A method includes receiving a design layout file for an integrated circuit device in a computing apparatus. The design layout file specifies dimensions of a plurality of features. The design layout file is decomposed to a plurality of colored layout files, each colored layout file representing a particular reticle in a multiple patterning process. Each of the colored layout files is retargeted separately in the computing apparatus to generate a plurality of retargeted colored layout files. Retargeting each of the colored layout files includes increasing dimensions of a first plurality of features based on spacings between the first plurality of features and adjacent features. The retargeted layout files are combined to generate a combined layout file. Features in the combined layout file are retargeted in the computing apparatus to increase dimensions of a second plurality of features based on spacings between the second plurality of features and adjacent features.
Abstract:
Approaches for cleaning/resolving lithographic hotspots (e.g., during a simulation phase of semiconductor design) are provided. Typically, a hotspot will be identified in a first polygon (having a first color) of a lithographic pattern or contour. Once a hotspot has been identified, a location (e.g., another portion of the first polygon or in a second polygon of the lithographic pattern having the first color) proximate the hotspot will be identified to place a stitch marker. Once the location has been identified, a stitch marker will be placed at that location. Then, a color of the stitch marked location will be changed to a second color, and the resulting lithographic pattern can be further processed to clean/resolve the hotspot.
Abstract:
Methods are provided for fabricating semiconductor integrated circuits including isolated trench features. In one embodiment, a method includes providing a semiconductor substrate with an overlying process layer. A trench pattern to be etched into the process layer is determined and that trench pattern is decomposed into first and second patterns, the second pattern including an isolated trench. First and second lithographic masks are formed to implement the first and second patterns, the second mask implementing the second pattern, the isolated trench, and a plurality of density balancer patterns symmetrically positioned with respect to the isolated trench. A first resist layer is patterned with the first lithographic mask and the process layer is etched with the first resist layer. A second resist layer is patterned with the second lithographic mask and the process layer is etched with the second resist layer to implement the required trench pattern in the process layer.
Abstract:
One illustrative method disclosed herein involves identifying an overall target pattern comprised of at least one hole-type feature, decomposing the overall target pattern into at least a first sub-target pattern and a second sub-target pattern, wherein the first sub-target pattern and the second sub-target pattern each comprise at least one common hole-type feature, generating a first set of mask data information corresponding to the first sub-target pattern, and generating a second set of mask data information corresponding to the second sub-target pattern.
Abstract:
A method includes receiving a design layout file for an integrated circuit device in a computing apparatus. The design layout file specifies dimensions of a plurality of features. The design layout file is decomposed to a plurality of colored layout files, each colored layout file representing a particular reticle in a multiple patterning process. Each of the colored layout files is retargeted separately in the computing apparatus to generate a plurality of retargeted colored layout files. Retargeting each of the colored layout files includes increasing dimensions of a first plurality of features based on spacings between the first plurality of features and adjacent features. The retargeted layout files are combined to generate a combined layout file. Features in the combined layout file are retargeted in the computing apparatus to increase dimensions of a second plurality of features based on spacings between the second plurality of features and adjacent features.
Abstract:
Methods are provided for fabricating semiconductor integrated circuits including isolated trench features. In one embodiment, a method includes providing a semiconductor substrate with an overlying process layer. A trench pattern to be etched into the process layer is determined and that trench pattern is decomposed into first and second patterns, the second pattern including an isolated trench. First and second lithographic masks are formed to implement the first and second patterns, the second mask implementing the second pattern, the isolated trench, and a plurality of density balancer patterns symmetrically positioned with respect to the isolated trench. A first resist layer is patterned with the first lithographic mask and the process layer is etched with the first resist layer. A second resist layer is patterned with the second lithographic mask and the process layer is etched with the second resist layer to implement the required trench pattern in the process layer.
Abstract:
One illustrative method disclosed herein involves identifying an overall target pattern comprised of at least one hole-type feature, decomposing the overall target pattern into at least a first sub-target pattern and a second sub-target pattern, wherein the first sub-target pattern and the second sub-target pattern each comprise at least one common hole-type feature, generating a first set of mask data information corresponding to the first sub-target pattern, and generating a second set of mask data information corresponding to the second sub-target pattern.
Abstract:
A method includes receiving a design layout file for an integrated circuit device in a computing apparatus. The design layout file specifies dimensions of a plurality of features. The design layout file is decomposed to a plurality of colored layout files, each colored layout file representing a particular reticle in a multiple patterning process. Each of the colored layout files is retargeted separately in the computing apparatus to generate a plurality of retargeted colored layout files. Retargeting each of the colored layout files includes increasing dimensions of a first plurality of features based on spacings between the first plurality of features and adjacent features. The retargeted layout files are combined to generate a combined layout file. Features in the combined layout file are retargeted in the computing apparatus to increase dimensions of a second plurality of features based on spacings between the second plurality of features and adjacent features.
Abstract:
Approaches for cleaning/resolving lithographic hotspots (e.g., during a simulation phase of semiconductor design) are provided. Typically, a hotspot will be identified in a first polygon (having a first color) of a lithographic pattern or contour. Once a hotspot has been identified, a location (e.g., another portion of the first polygon or in a second polygon of the lithographic pattern having the first color) proximate the hotspot will be identified to place a stitch marker. Once the location has been identified, a stitch marker will be placed at that location. Then, a color of the stitch marked location will be changed to a second color, and the resulting lithographic pattern can be further processed to clean/resolve the hotspot.