Abstract:
Integrated circuits and methods for producing the same are provided. A method for producing an integrated circuit includes forming an interconnect trench in a dielectric layer, and forming a conformal barrier layer overlying the dielectric layer and within the interconnect trench. A barrier spacer is formed by removing the conformal barrier layer from an interconnect trench bottom, and an interconnect is formed within the interconnect trench after forming the barrier spacer. An air gap trench is formed in the dielectric layer adjacent to the barrier spacer, and a top cap is formed overlying the interconnect and the air gap trench, where the top cap bridges the air gap trench to produce an air gap in the air gap trench.
Abstract:
Methods for fabricating integrated circuits are provided. In an embodiment, a method for fabricating an integrated circuit includes forming a mask overlying a material to be etched by forming first hard mask segments overlying the material to be etched, forming sacrificial mandrels overlying the material to be etched and around each hard mask segment, forming second hard mask segments overlying the semiconductor substrate and adjacent each sacrificial mandrel, and removing the sacrificial mandrels to form first gaps surrounding each first hard mask segment, wherein each first gap is bounded by a respective first hard mask segment and an adjacent second hard mask segment. The method includes etching the material to be etched through the mask.
Abstract:
Methods of forming an interconnect of an IC are disclosed. The methods include forming a first interlayer dielectric (ILD) layer and a second ILD layer with an ILD etch stop layer (ESL) therebetween. The ILD ESL has an etch rate that is at least five times slower than the first and second ILD layers, and may include, for example, aluminum oxynitride. A dual damascene (DD) hard mask is used to form a wire trench opening in the second ILD layer and a via opening in the first ILD layer, creating a via-wire opening. Due to the slower etch rate, the ILD ESL defines the via opening in the first ILD layer as a chamferless via opening. A unitary via-wire conductive structure coupled to the conductive structure in the via-wire opening can be formed from the via-wire opening.
Abstract:
Methods of forming an interconnect of an IC are disclosed. The methods include forming a first interlayer dielectric (ILD) layer and a second ILD layer with an ILD etch stop layer (ESL) therebetween. The ILD ESL has an etch rate that is at least five times slower than the first and second ILD layers, and may include, for example, aluminum oxynitride. A dual damascene (DD) hard mask is used to form a wire trench opening in the second ILD layer and a via opening in the first ILD layer, creating a via-wire opening. Due to the slower etch rate, the ILD ESL defines the via opening in the first ILD layer as a chamferless via opening. A unitary via-wire conductive structure coupled to the conductive structure in the via-wire opening can be formed from the via-wire opening.
Abstract:
Integrated circuits that include a magnetic tunnel junction (MTJ) for a magnetoresistive random-access memory (MRAM) and methods for fabricating such integrated circuits are provided. In one example, a method for fabricating an integrated circuit includes forming a lower electrode on a metal interconnect. The metal interconnect is disposed above a semiconductor substrate and is aligned with a normal axis that is substantially perpendicular to the semiconductor substrate. The lower electrode includes a conductive metal plug. A MTJ stack is formed on the lower electrode aligned with the normal axis.
Abstract:
Integrated circuits that include a magnetic tunnel junction (MTJ) for a magnetoresistive random-access memory (MRAM) and methods for fabricating such integrated circuits are provided. In one example, a method for fabricating an integrated circuit includes forming a lower electrode on a metal interconnect. The metal interconnect is disposed above a semiconductor substrate and is aligned with a normal axis that is substantially perpendicular to the semiconductor substrate. The lower electrode includes a conductive metal plug. A MTJ stack is formed on the lower electrode aligned with the normal axis.
Abstract:
One method includes, among other things, forming a bi-layer etch stop layer above a conductive contact comprised of titanium nitride, the bi-layer etch stop layer consisting of an upper second layer that is made of aluminum nitride, forming a patterned etch mask comprised of a layer of titanium nitride above a second layer of insulating material, with the bi-layer etch stop layer in position above the conductive contact, performing an etching process through the patterned etch mask to define a cavity in the second layer of insulating material, performing a second etching process to remove at least the layer of titanium nitride of the patterned etch mask, forming an opening in the bi-layer etch stop layer so as to thereby expose a portion of the conductive contact and forming a conductive structure in the cavity that is conductively coupled to the exposed portion of the conductive contact.
Abstract:
Integrated circuits and methods for producing the same are provided. A method for producing an integrated circuit includes forming an interconnect trench in a dielectric layer, and forming a conformal barrier layer overlying the dielectric layer and within the interconnect trench. A barrier spacer is formed by removing the conformal barrier layer from an interconnect trench bottom, and an interconnect is formed within the interconnect trench after forming the barrier spacer. An air gap trench is formed in the dielectric layer adjacent to the barrier spacer, and a top cap is formed overlying the interconnect and the air gap trench, where the top cap bridges the air gap trench to produce an air gap in the air gap trench.
Abstract:
Methods for fabricating integrated circuits are provided. In an embodiment, a method for fabricating an integrated circuit includes forming a mask overlying a material to be etched by forming first hard mask segments overlying the material to be etched, forming sacrificial mandrels overlying the material to be etched and around each hard mask segment, forming second hard mask segments overlying the semiconductor substrate and adjacent each sacrificial mandrel, and removing the sacrificial mandrels to form first gaps surrounding each first hard mask segment, wherein each first gap is bounded by a respective first hard mask segment and an adjacent second hard mask segment. The method includes etching the material to be etched through the mask.