Abstract:
A capacitor structure includes a first metal layer including a first plurality of horizontally-spaced neutral conductive lines positioned horizontally between a first plurality of horizontally-spaced high voltage conductive lines. The capacitor structure further includes a second metal layer including a second plurality of horizontally-spaced neutral conductive lines positioned horizontally between a second plurality of horizontally-spaced high voltage conductive lines. The capacitor structure further includes a third metal layer positioned vertically below the first metal layer and above the second metal layer, the third metal layer including a third plurality of horizontally-spaced neutral conductive lines positioned horizontally between a first plurality of horizontally-spaced low voltage conductive lines. The first plurality of low voltage lines are positioned vertically between the first and second plurality of neutral lines.
Abstract:
One illustrative crack-stop structure disclosed herein may include a first crack-stop metallization layer comprising a first metal line layer that has a plurality of openings formed therein and a second crack-stop metallization layer positioned above and adjacent the first crack-stop metallization layer, wherein the second crack-stop metallization layer has a second metal line layer and a via layer, and wherein the via layer comprises a plurality of vias having a portion that extends at least partially into the openings in the first metal line layer of the first crack-stop metallization layer so as to thereby form a stepped, non-planar interface between the first metal line layer of the first crack-stop metallization layer and the via layer of the second crack-stop metallization layer.
Abstract:
A capacitor structure includes a first metal layer including a first plurality of horizontally-spaced neutral conductive lines positioned horizontally between a first plurality of horizontally-spaced high voltage conductive lines. The capacitor structure further includes a second metal layer including a second plurality of horizontally-spaced neutral conductive lines positioned horizontally between a second plurality of horizontally-spaced high voltage conductive lines. The capacitor structure further includes a third metal layer positioned vertically below the first metal layer and above the second metal layer, the third metal layer including a third plurality of horizontally-spaced neutral conductive lines positioned horizontally between a first plurality of horizontally-spaced low voltage conductive lines. The first plurality of low voltage lines are positioned vertically between the first and second plurality of neutral lines.
Abstract:
Integrated circuits and methods for producing the same are provided. A method for producing an integrated circuit includes forming an interconnect trench in a dielectric layer, and forming a conformal barrier layer overlying the dielectric layer and within the interconnect trench. A barrier spacer is formed by removing the conformal barrier layer from an interconnect trench bottom, and an interconnect is formed within the interconnect trench after forming the barrier spacer. An air gap trench is formed in the dielectric layer adjacent to the barrier spacer, and a top cap is formed overlying the interconnect and the air gap trench, where the top cap bridges the air gap trench to produce an air gap in the air gap trench.
Abstract:
Semiconductor devices and methods of fabricating the semiconductor devices with chamfer-less via multi-patterning are disclosed. One method includes, for instance: obtaining an intermediate semiconductor device; performing a trench etch into a portion of the intermediate semiconductor device to form a trench pattern; depositing an etching stack; performing at least one via patterning process; and forming at least one via opening into a portion of the intermediate semiconductor device. An intermediate semiconductor device is also disclosed.
Abstract:
Integrated circuits and methods for producing the same are provided. A method for producing an integrated circuit includes forming an interconnect trench in a dielectric layer, and forming a conformal barrier layer overlying the dielectric layer and within the interconnect trench. A barrier spacer is formed by removing the conformal barrier layer from an interconnect trench bottom, and an interconnect is formed within the interconnect trench after forming the barrier spacer. An air gap trench is formed in the dielectric layer adjacent to the barrier spacer, and a top cap is formed overlying the interconnect and the air gap trench, where the top cap bridges the air gap trench to produce an air gap in the air gap trench.