摘要:
The invention is directed to methods of producing ethanol and decreasing residual starch production in a no cook fermentation comprising contacting granular starch containing substrates with a granular starch hydrolyzing enzyme, a protease, and a fermenting microorganism under suitable fermentation conditions at a temperature below the starch gelatinization temperature of the starch substrate to produce ethanol, wherein the ethanol production is increased and the amount of residual starch is decreased compared to a substantially similar method conducted without the protease.
摘要:
The invention is directed to methods of producing ethanol and decreasing residual starch production in a no cook fermentation comprising contacting granular starch containing substrates with a granular starch hydrolyzing enzyme, a protease, and a fermenting microorganism under suitable fermentation conditions at a temperature below the starch gelatinization temperature of the starch substrate to produce ethanol, wherein the ethanol production is increased and the amount of residual starch is decreased compared to a substantially similar method conducted without the protease.
摘要:
The present invention relates to a process for producing a rice protein concentrate from a rice substrate comprising, enzymatically hydrolyzing a rice substrate with an enzyme having granular starch hydrolyzing (GSH) activity and a second starch hydrolyzing enzyme at a temperature at or below 72° C. and at a pH of about 3.0 to 6.5 to obtain a solubilized starch fraction and a residue fraction which includes insoluble protein, and separating the solubilized starch fraction from the residue to obtain a rice protein concentrate. The rice protein concentrate may be used in animal feed and human food formulations.
摘要:
The invention is directed to methods of producing ethanol and decreasing residual starch production in a no cook fermentation comprising contacting granular starch containing substrates with a granular starch hydrolyzing enzyme, a protease, and a fermenting microorganism under suitable fermentation conditions at a temperature below the starch gelatinization temperature of the starch substrate to produce ethanol, wherein the ethanol production is increased and the amount of residual starch is decreased compared to a substantially similar method conducted without the protease.
摘要:
A dry solids staging fermentation process for producing an end-product, such as ethanol is disclosed said process including an initial fermentation step including combining a first fermentable substrate with one or more starch hydrolyzing enzymes and fermenting organisms in a fermentation vessel and a loading step which includes adding a second fermentable substrate to the fermentation vessel wherein the percent dry solids (% DS) of the fermentation broth increases over time.
摘要:
A maltogenic a-amylase from Trichoderma reesei (TrAA) and variants thereof are useful in the production of high-maltose syrups from liquefied starch. Particularly high maltose concentrations are achieved when TrAA is used in the presence of a pullulanase. Expression hosts and encoding nucleic acids useful for producing TrAA and its variants also are provided.
摘要:
Methods for the production of substrate, tuber, and grain compositions containing isomalto-oligosaccharides are described. The methods comprise (a) contacting a substrate, tuber or grain containing ungelatinized starch with a maltogenic enzyme and a starch liquefying enzyme to produce maltose; (b) contacting said maltose with a transglucosidic enzyme, wherein said steps (a) and step (b) occur at a temperature less than or at a starch gelatinization temperature; and (c) obtaining a substrate, grain or tuber composition having an enzymatically produced isomalto-oligosaccharide, wherein the oligosaccharide is derived from the grain. The maltogenic enzyme can be either exogenous or endogenous to the grain. The contacting steps can be sequential or concurrent. The present invention also describes flour, oral rehydrating solutions, beer adjuncts, food, feed, beverage additives incorporating the grain compositions made as described.
摘要:
Methods for the production of substrate, tuber, and grain compositions containing isomalto-oligosaccharides are described. The methods comprise (a) contacting a substrate, tuber or grain containing ungelatinized starch with a maltogenic enzyme and a starch liquefying enzyme to produce maltose; (b) contacting the maltose with a transglucosidic enzyme, wherein the steps (a) and (b) occur at a temperature less than or at a starch gelatinization temperature; and (c) obtaining a substrate, grain or tuber composition having an enzymatically produced isomalto-oligosaccharide, wherein the oligosaccharide is derived from the grain. The maltogenic enzyme can be either exogenous or endogenous to the grain. The contacting steps can be sequential or concurrent. The present invention also describes flour, oral rehydrating solutions, beer adjuncts, food, feed, beverage additives incorporating the grain compositions made as described.
摘要:
Embodiments of the present disclosure relate to a process for producing isoprenoid precursor molecules and/or isoprenoids from a starch substrate by saccharification and/or fermentation. The saccharification is effectively catalyzed by a glucoamylase at a pH in the range of 5.0 to 8.0. At a pH of 6.0 or above, the glucoamylase possesses at least 50% activity relative to its maximum activity. The saccharification and fermentation may be performed as a simultaneous saccharification and fermentation (SSF) process.
摘要:
Rice protein concentrates prepared at low temperature exhibit improved functionality and beneficial physiological benefits, including lowered cholesterol and enhanced lactic acid dehydrogenase activity, without an increase in blood urea nitrogen. The rice protein concentration could be made into a wet dough with comparatively less water than a soy protein concentrate. Use of the rice protein concentrate thus improved processing steps in the formulation of a food article containing the concentrate. The food product advantageously shows an extending shelf life and improved palatable texture.