摘要:
Methods for passivating exposed surfaces within an apparatus for depositing thin films on a substrate are disclosed. Interior surfaces of a deposition chamber and conduits in communication therewith are passivated to prevent reactants used in a deposition process and reaction products from adsorbing or chemisorbing to the interior surfaces. The surfaces may be passivated for this purpose by surface treatments, lining, temperature regulation, or combinations thereof. A method for determining a temperature or temperature range at which to maintain a surface to minimize accumulation of reactants and reaction products is also disclosed. A deposition apparatus with passivated surfaces within the deposition chamber and gas flow paths is also disclosed.
摘要:
Electronic devices and systems are provided with material structured from irradiation of a gas precursor with electromagnetic energy at a frequency tuned to an absorption frequency of the gas precursor. The frequency of the electromagnetic energy may be selected to impart specific amounts of energy to a gas precursor at a specific frequency that provides point of use activation of the gas precursor.
摘要:
Apparatus is provided for a method of forming a film on a substrate that includes activating a gas precursor to deposit a material on the substrate by irradiating the gas precursor with electromagnetic energy at a frequency tuned to an absorption frequency of the gas precursor. The electromagnetic energy may be provided by an array of lasers. The frequency of the laser beam may be selected by switching from one laser in the array to another laser in the array. The laser array may include laser diodes, one or more tunable lasers, solid state lasers, or gas lasers. The frequency of the electromagnetic energy may be selected to impart specific amounts of energy to a gas precursor at a specific frequency that provides point of use activation of the gas precursor.
摘要:
The invention includes a deposition apparatus having a reaction chamber, and a microwave source external to the chamber. The microwave source is configured to direct microwave radiation toward the chamber. The chamber includes a window through which microwave radiation from the microwave source can pass into the chamber. The invention also includes deposition methods (such as CVD or ALD methods) in which microwave radiation is utilized to activate at least one component within a reaction chamber during deposition of a material over a substrate within the reaction chamber.
摘要:
A chemical vapor deposition chamber has a vacuum exhaust line extending therefrom. Material is deposited over a first plurality of substrates within the deposition chamber under conditions effective to deposit effluent product over internal walls of the vacuum exhaust line. At least a portion of the vacuum exhaust line is isolated from the deposition chamber. While isolating, a cleaning fluid is flowed to the vacuum exhaust line effective to at least reduce thickness of the effluent product over the internal walls within the vacuum exhaust line from what it was prior to initiating said flowing. After said flowing, the portion of the vacuum exhaust line, and the deposition chamber are provided in fluid communication with one another and material is deposited over a second plurality of substrates within the deposition chamber under conditions effective to deposit effluent product over internal walls of the vacuum exhaust line.
摘要:
The invention includes a method of forming a layer on a semiconductor substrate that is provided within a reaction chamber. The chamber has at least two inlet ports that terminate in openings. A first material is flowed into the reaction chamber through the opening of a first of the inlet ports. At least a portion of the first material is deposited onto the substrate. The reaction chamber is purged by flowing an inert material into the reaction chamber through the opening of a second of the inlet ports. The inert material passes from the opening and through a distribution head that is positioned within the reaction chamber between the first and second openings. A second material can then be flowed into the chamber through an opening in a third inlet port and deposited onto the substrate. The invention also includes a chemical vapor deposition apparatus.
摘要:
A semiconductor substrate processor includes a substrate transfer chamber and a plurality of substrate processing chambers connected therewith. An interfacial structure is received between at least one of the processing chambers and the transfer chamber. The interfacial structure includes a substantially non-metallic, thermally insulative mass of material interposed between the one processing chamber and the transfer chamber. The mass is of sufficient volume to effectively reduce heat transfer from the processing chamber to the transfer chamber than would otherwise occur in the absence of said mass of material. An interfacial structure includes a body having a substrate passageway extending therethrough. The passageway includes walls at least a portion of which are substantially metallic. The body includes material peripheral of the walls which is substantially non-metallic and thermally insulative. The substantially non-metallic material has mounting openings extending at least partially therein.
摘要:
A chemical vapor deposition (CVD) apparatus includes a deposition chamber defined partly by a chamber wall. The chamber wall has an innermost surface inside the chamber and an outermost surface outside the chamber. The apparatus further includes a valve body having a seat between the innermost and outermost surfaces of the chamber wall. The chamber wall can be a lid and the valve can include a portion of the lid as at least a part of the seat. The valve body can include at least a part of a valve housing between the innermost and outermost surfaces of the chamber wall. Such a valve body can even include a portion of the chamber wall as at least part of the valve housing. The deposition apparatus can further include at least a part of a process chemical inlet to the valve body between the innermost and outermost surfaces of the chamber wall. In one example, the chamber wall can form at least a part of the chemical inlet. A deposition method includes temporarily isolating a process chemical supply line from a deposition chamber at a chamber wall of the deposition chamber. While isolated at the chamber wall, the supply line can be filled to a first pressure with chemical through a supply valve upstream from the chamber wall. The chemical can be released from the supply line into the deposition chamber at the chamber wall. The supply line can be again temporarily isolated from the deposition chamber at the chamber wall.
摘要:
Apparatus is provided for a method of forming a film on a substrate that includes activating a gas precursor to deposit a material on the substrate by irradiating the gas precursor with electromagnetic energy at a frequency tuned to an absorption frequency of the gas precursor. The electromagnetic energy can be provided by an array of lasers. The frequency of the laser beam is selected by switching from one laser in the array to another laser in the array. The laser array may include laser diodes, one or more tunable lasers, solid state lasers, or gas lasers. The frequency of the electromagnetic energy is selected to impart specific amounts of energy to a gas precursor at a specific frequency that provides point of use activation of the gas precursor.
摘要:
Chemical vapor deposition methods of forming titanium silicide including layers on substrates are disclosed. TiCl4 and at least one silane are first fed to the chamber at or above a first volumetric ratio of TiCl4 to silane for a first period of time. The ratio is sufficiently high to avoid measurable deposition of titanium silicide on the substrate. Alternately, no measurable silane is fed to the chamber for a first period of time. Regardless, after the first period, TiCl4 and at least one silane are fed to the chamber at or below a second volumetric ratio of TiCl4 to silane for a second period of time. If at least one silane was fed during the first period of time, the second volumetric ratio is lower than the first volumetric ratio. Regardless, the second feeding is effective to plasma enhance chemical vapor deposit a titanium silicide including layer on the substrate.