摘要:
A recordable medium includes an inscription layer and at least one contrast inverting layer. The inscription layer has at least a first sub-layer and a second sub-layer that combine upon application of a write power. The inscription layer has a reflectivity R1 with respect to a read beam before application of the write power and a reflectivity R2 after application of the write power, and R1 R4.
摘要翻译:可记录介质包括刻录层和至少一个对比反转层。 刻录层至少具有在施加写入功率时组合的第一子层和第二子层。 刻录层在施加写入功率之前相对于读取光束具有反射率R 1,在施加写入功率之后具有反射率R 2,并且R 1 R 4。
摘要:
A recordable medium includes an inscription layer and at least one contrast inverting layer. The inscription layer has at least a first sub-layer and a second sub-layer that combine upon application of a write power. The inscription layer has a reflectivity R1 with respect to a read beam before application of the write power and a reflectivity R2 after application of the write power, and R1 R4.
摘要翻译:可记录介质包括刻录层和至少一个对比反转层。 刻录层至少具有在施加写入功率时组合的第一子层和第二子层。 刻录层在施加写入功率之前相对于读取光束具有反射率R 1,在施加写入功率之后具有反射率R 2,并且R 1 R 4。
摘要:
A pixel unit including a first sub-pixel is disclosed. The first sub-pixel includes a first display medium, a second display medium, a first driving device, and a second driving device. The first driving device drives the first display medium. The second driving device drives the second display medium.
摘要:
The disclosure provides a method for de-bonding a flexible device. The method for de-bonding a flexible device includes providing a first carrier to mount a carrier substrate thereon, a release layer thereon and a flexible device covering the release layer and a portion of the carrier substrate. A vacuum suction process is performed to suction the flexible device using a vacuum device. A separation process is performed with air entering into an interface between the flexible device and the release layer to separate a portion of the flexible device from the release layer and the carrier substrate using a separation device. A first release process is performed so that the portion of the flexible device is separated from the vacuum device.
摘要:
A solar cell unit. The solar cell unit includes a first tubulate structure, an electron transfer layer coated thereon, a second tubulate structure, a metal layer coated thereon, a space formed between the first and second tubulate structures, a dye layer coated on the electron transfer layer, and an electrolyte filled in the space, wherein the diameters of the first and second tubulate structures are different and the electron transfer layer is opposite to the metal layer. The invention also provides a module including a plurality of the solar cell units.
摘要:
Disclosed are a method for improving the uniformity of a flat panel light source and the light source thereof. It achieves a diffusion effect by blurring the lighting surface of the light module, thereby makes the outgoing lights more uniform. The blurring process can be performed on the inner or outer surface of a lighting substrate before a flat panel light source is assembled. Otherwise, the blurring process may be performed on an outer surface of an assembled light module. The invention is applicable to a field emission display (FED) back-light or front-light module. The lighting surface of a cathode plate module is blurred for an FED back-light source, and the lighting surface of an anode plate module for an FED front-light source.
摘要:
A triode field emission display is provided. It utilizes the electrical characteristics that an edge structure may raise the electric field intensity to expose an edge of a cathode plate through an opening of a gate layer, thereby forming the edge structure at an emitter to raise the electric field intensity. Therefore, reduction of driving voltage is achieved.
摘要:
A quadrode field emission display is provided, where a low driving voltage is reached by an edge structure, and display in the dark is achieved by adding a sub-gate electrode. With respect to the electrical characteristics that an edge structure may raise the electric field intensity, an edge of a cathode plate through an opening of a gate layer is exposed, thereby forming the edge structure at an emitter to raise the electric field. It also reduces the driving voltage substantially. Therefore, the display in the dark is achieved by adjusting the voltage without changing the structure.
摘要:
A field emission device includes a first substrate, a second substrate spaced apart from the first substrate, a cathode structure formed between the first substrate and the second substrate for emitting electrons toward the second substrate, a luminescent layer formed between the first substrate and the second substrate for providing light when the electrons impinge thereon, and a reflecting layer formed between the second substrate and the luminescent layer for reflecting the light toward the first substrate.
摘要:
A carbon nano-tube field emission display has a plurality of strip shaped gate, wherein the strip shaped gate of the triode structure is now in place of the conventional hole shaped gate, moreover, pluralities of cathode electrons are induced by the electric force from the side of the gate. Therefore, when the carbon nano-tube electron emission source emits electrons, which is controlled under the strip shaped gate, and the diffusion direction of the electron beam is confined in the same direction. Consequently, controlling the image pixel and using the particular advantage of triode-structure field emission display significantly improve the image uniformity and the luminous efficiency.