摘要:
A composite diode module is provided having an impedance matching member integrally formed within the module. The module includes a base member, a heat sink holder member having an aperture, a gold plated diamond heat sink which is disposed in the aforementioned aperture, and an encapsulant holder member having a second aperture. IMPATT diodes are disposed in dielectric spacers bonded to one end of the heat sink in alignment with the second aperture. A bias pin member is then bonded on the second end of the IMPATT and an encapsulant having selected electrical properties is provided in the second pair of apertures to secure the diode and to provide the diode module with a predetermined impedance characteristic. In a preferred embodiment, the module includes a pair of IMPATT diodes. With this arrangement, the module may be used in power combiners.
摘要:
In one embodiment, an LED lamp has a generally bulb shape. The LEDs are low power types and are encapsulated in thin, narrow, flexible strips. The LEDs are connected in series in the strips to drop a desired voltage. The strips are affixed to the outer surface of a bulb form to provide structure to the lamp. The strips are connected in parallel to a power supply, which may be housed in the lamp. Since many low power LEDs are used and are spread out over a large surface area, there is no need for a large metal heat sink. Further, the light emission is similar to that of an incandescent bulb. In other embodiment, there is no bulb form and the strips are bendable to have a variety of shapes. In another embodiment, a light sheet is bent to provide 360 degrees of light emission. Many other embodiments are described.
摘要:
A solid state light sheet and method of fabricating the sheet are disclosed. In one embodiment, bare LED chips have top and bottom electrodes, where the bottom electrode is a large reflective electrode. The bottom electrodes of an array of LEDs (e.g., 500 LEDs) are bonded to an array of electrodes formed on a flexible bottom substrate. Conductive traces are formed on the bottom substrate connected to the electrodes. A transparent top substrate having conductors is then laminated over the bottom substrate. Various ways to connect the LEDs in series are described along with many embodiments. The light sheets may be formed to emit light from opposite surfaces of the light sheet, enabling it to be used in a hanging fixture to illuminate the ceiling as well as the floor. The light sheet provides a practical substitute for a standard 2×4 foot fluorescent ceiling fixture.
摘要:
A solid state light sheet and method of fabricating the sheet are disclosed. In one embodiment, bare LED chips have top and bottom electrodes, where the bottom electrode is a large reflective electrode. The bottom electrodes of an array of LEDs (e.g., 500 LEDs) are bonded to an array of electrodes formed on a flexible bottom substrate. Conductive traces are formed on the bottom substrate connected to the electrodes. A transparent top substrate is then formed over the bottom substrate. Various ways to connect the LEDs in series are described along with many embodiments. In one method, the top substrate contains a conductor pattern that connects to LED electrodes and conductors on the bottom substrate. In another embodiment, a conductor layer is formed on the outer surface of the top substrate and makes contact with the LED electrodes and conductors on the bottom substrate via openings formed in the top substrate.
摘要:
In one embodiment, an LED lamp has a generally bulb shape. The LEDs are low power types and are encapsulated in thin, narrow, flexible strips. The LEDs are connected in series in the strips to drop a desired voltage. The strips are affixed to the outer surface of a bulb form to provide structure to the lamp. The strips are connected in parallel to a power supply, which may be housed in the lamp. Since many low power LEDs are used and are spread out over a large surface area, there is no need for a large metal heat sink. Further, the light emission is similar to that of an incandescent bulb. In other embodiment, there is no bulb form and the strips are bendable to have a variety of shapes. In another embodiment, a light sheet is bent to provide 360 degrees of light emission. Many other embodiments are described.
摘要:
A solid state light sheet and method of fabricating the sheet are disclosed. In one embodiment, bare LED chips have top and bottom electrodes, where the bottom electrode is a large reflective electrode. The bottom electrodes of an array of LEDs (e.g., 500 LEDs) are bonded to an array of electrodes formed on a flexible bottom substrate. Conductive traces are formed on the bottom substrate connected to the electrodes. A transparent top substrate having conductors is then laminated over the bottom substrate. Various ways to connect the LEDs in series are described along with many embodiments. The light sheets may be formed to emit light from opposite surfaces of the light sheet, enabling it to be used in a hanging fixture to illuminate the ceiling as well as the floor. The light sheet provides a practical substitute for a standard 2×4 foot fluorescent ceiling fixture.
摘要:
A solid state light sheet and method of fabricating the sheet are disclosed. In one embodiment, bare LED chips have top and bottom electrodes, where the bottom electrode is a large reflective electrode. The bottom electrodes of an array of LEDs (e.g., 500 LEDs) are bonded to an array of electrodes formed on a flexible bottom substrate. Conductive traces are formed on the bottom substrate connected to the electrodes. A transparent top substrate is then formed over the bottom substrate. Various ways to connect the LEDs in series are described along with many embodiments. In one method, the top substrate contains a conductor pattern that connects to LED electrodes and conductors on the bottom substrate. In another embodiment, a conductor layer is formed on the outer surface of the top substrate and makes contact with the LED electrodes and conductors on the bottom substrate via openings formed in the top substrate.
摘要:
A solid state light sheet and method of fabricating the sheet are disclosed. In one embodiment, bare LED chips have top and bottom electrodes, where the bottom electrode is a large reflective electrode. The bottom electrodes of an array of LEDs (e.g., 500 LEDs) are bonded to an array of electrodes formed on a flexible bottom substrate. Conductive traces are formed on the bottom substrate connected to the electrodes. A transparent top substrate is then formed over the bottom substrate. Various ways to connect the LEDs in series are described along with many embodiments. In one method, the top substrate contains a conductor pattern that connects to LED electrodes and conductors on the bottom substrate.
摘要:
A solid state light sheet and method of fabricating the sheet are disclosed. In one embodiment, bare LED chips have top and bottom electrodes, where the bottom electrode is a large reflective electrode. The bottom electrodes of an array of LEDs (e.g., 500 LEDs) are bonded to an array of electrodes formed on a flexible bottom substrate. Conductive traces are formed on the bottom substrate connected to the electrodes. A transparent top substrate is then formed over the bottom substrate. Various ways to connect the LEDs in series are described along with many embodiments. In one method, the top substrate contains a conductor pattern that connects to LED electrodes and conductors on the bottom substrate.
摘要:
A device for separating metal components from a colloidal suspension or solution uses a vessel for holding the colloidal suspension or solution. A membrane impermeable to the selected metal components of a colloidal suspension or solution is sealed over a support to form a leaf element. The leaf element includes an outlet for the selected components of the colloidal suspension or solution and is extended into the colloidal suspension or solution. The leaf element is controllably vibrated simultaneously with application of a negative or positive pressure which is used to motivate permeation of the membrane by the liquid of the colloidal suspension or solution to purify it. Metals removed by the method include metals with an atomic number greater than 10 including and/or silicon. The colloidal suspension or solution may optionally contain a metal precipitator such as a dithiocarbamate and/or trithiocarbamate to aid in the separation.