摘要:
Future operability predictor testing is incorporated into the fabrication of integrated circuits that utilize redundancy. Select reliability testing can be used to identify circuit elements such as memory cells that fail or become defective over time. Future operability tests and associated stress conditions are then developed for application during the fabrication process to identify memory cells that may pose a future operability concern before they actually fail. Memory cells that are determined to pose a future operability concern are replaced by redundant memory cells.
摘要:
A non-volatile memory system is programmed so as to reduce or avoid program disturb. In accordance with one embodiment, multiple program inhibit schemes are employed for a single non-volatile memory system. Program inhibit schemes are selected based on the word line being programmed. Certain program inhibit schemes have been discovered to better minimize or eliminate program disturb at select word lines. In one embodiment, selecting a program inhibit scheme includes selecting a program voltage pulse ramp rate. Different ramp rates have been discovered to better minimize program disturb when applied to select word lines. In another embodiment, the temperature of a memory system is detected before or during a program operation. A program inhibit scheme can be selected based on the temperature of the system.
摘要:
A non-volatile memory system is programmed so as to reduce or avoid program disturb. In accordance with one embodiment, multiple program inhibit schemes are employed for a single non-volatile memory system. Program inhibit schemes are selected based on the word line being programmed. Certain program inhibit schemes have been discovered to better minimize or eliminate program disturb at select word lines. In one embodiment, selecting a program inhibit scheme includes selecting a program voltage pulse ramp rate. Different ramp rates have been discovered to better minimize program disturb when applied to select word lines. In another embodiment, the temperature of a memory system is detected before or during a program operation. A program inhibit scheme can be selected based on the temperature of the system.
摘要:
Shifts in the apparent charge stored on a floating gate (or other charge storing element) of a non-volatile memory cell can occur because of the coupling of an electric field based on the charge stored in adjacent floating gates (or other adjacent charge storing elements). The problem occurs most pronouncedly between sets of adjacent memory cells that have been programmed at different times. To compensate for this coupling, the read process for a given memory cell will take into account the programmed state of an adjacent memory cell.
摘要:
The unintentional programming of an unselected (or inhibited) non-volatile storage element during a program operation that intends to program another non-volatile storage element is referred to as “program disturb.” A system is proposed for programming and/or reading non-volatile storage that reduces the effect of program disturb. In one embodiment, different verify levels are used for a particular word line (or other grouping of storage elements) during a programming process. In another embodiment, different compare levels are used for a particular word (or other grouping of storage elements) during a read process.
摘要:
A low voltage of the order of or one to three volts instead of an intermediate VPASS voltage (e.g. of the order of five to ten volts) is applied to word line zero immediately adjacent to the source or drain side select gate of a NAND flash device to reduce or prevent the shifting of threshold voltage of the memory cells coupled to word line zero during the programming cycles of the different cells of the NAND strings. This may be implemented in any one of a variety of different self boosting schemes including erased areas self boosting and local self boosting schemes. In a modified erased area self boosting scheme, low voltages are applied to two or more word lines on the source side of the selected word line to reduce band-to-band tunneling and to improve the isolation between two boosted channel regions. In a modified local self boosting scheme, zero volt or low voltages are applied to two or more word lines on the source side and to two or more word lines on the drain side of the selected word line to reduce band-to-band tunneling and to improve the isolation of the channel areas coupled to the selected word line.
摘要:
Non-volatile storage elements are programmed in a manner that reduces program disturb by using modified pass voltages. -In particular, during the programming of a selected storage element associated with a selected word line, a higher pass voltage is applied to word lines associated with previously programmed non-volatile storage elements in the set than to word lines associated with unprogrammed and/or partly programmed non-volatile storage elements in the set. The pass voltage is sufficiently high to balance the channel potentials on the source and drain sides of the selected word line and/or to reduce leakage of charge between the boosted channel regions. Optionally, an isolation region is formed between the boosted channel regions by applying a reduced voltage on one or more word lines between the selected word line and the word lines that receive the higher pass voltage.
摘要:
A NAND flash memory device incorporates a unique booster plate design. The booster plate is biased during read and program operations and the coupling to the floating gates in many cases reduces the voltage levels necessary to program and read the charge stored in the gates. The booster plate also shields against unwanted coupling between floating gates. Self boosting, local self boosting, and erase area self boosting modes used with the unique booster plate further improve read/write reliability and accuracy. A more compact and reliable memory device can hence be realized according to the present invention.
摘要:
A program pulse is applied to a set of non-volatile storage elements. The magnitude of the program pulse is chosen to be low enough such that no non-volatile storage elements will be over programmed. The non-volatile storage elements are tested to determine whether at least one non-volatile storage element (or some other minimum number) has been programmed past a test threshold. If so, the set of non-volatile memory elements is considered to have one or more fast programming non-volatile storage elements and future programming is performed using a smaller increment value for subsequent program pulses. If the set of non-volatile memory elements is not determined to have one or more fast programming non-volatile storage elements, then a larger increment value is used for subsequent program pulses until one non-volatile storage element (or some other minimum number) has been programmed past the test threshold, at which point the smaller increment value is used for subsequent program pulses.
摘要:
The erase voltage applied to a set of non-volatile storage elements being erased is structured to provide controlled shifts in the threshold voltage of the storage elements. The erase voltage is applied as a series of voltage pulses, when necessary, to shift the threshold voltage of to-be-erased memory cells below a verify level indicative of an erased condition. To avoid over-erasing the memory cells, the second erase voltage pulse is decreased, or not increased, in magnitude when compared to the previously applied voltage pulse. By decreasing or not increasing the size of the erase voltage, the amount of charge transferred from the cells by the second pulse is controlled to more accurately position an erased threshold voltage distribution for the cells near the verify level. Subsequent erase voltage pulses are increased in magnitude to provide further erasing when needed.