Abstract:
Obtaining a structure comprised of first and second layers of a first semiconductor materials and a strain relief buffer (SRB) layer between the first and second layers, forming a sidewall spacer on the sidewalls of an opening in the second layer, and forming a third semiconductor material in the opening, wherein the first, second and third semiconductor materials are different. A device includes first and second layers of first and second semiconductor materials and an SRB layer positioned above the first layer. The second layer is positioned above a first portion of the SRB layer, a region of a third semiconductor material is in an opening in the second layer and above a second portion of the SRB layer, and an insulating material is positioned between the region comprised of the third semiconductor material and the second layer.
Abstract:
Obtaining a structure comprised of first and second layers of a first semiconductor materials and a strain relief buffer (SRB) layer between the first and second layers, forming a sidewall spacer on the sidewalls of an opening in the second layer, and forming a third semiconductor material in the opening, wherein the first, second and third semiconductor materials are different. A device includes first and second layers of first and second semiconductor materials and an SRB layer positioned above the first layer. The second layer is positioned above a first portion of the SRB layer, a region of a third semiconductor material is in an opening in the second layer and above a second portion of the SRB layer, and an insulating material is positioned between the region comprised of the third semiconductor material and the second layer.
Abstract:
A method of forming a multi-valued logic transistor with a small footprint and the resulting device are disclosed. Embodiments include forming plural fins on a silicon substrate, each fin covered with a hardmask; filling spaces between the fins and hard masks with an oxide; removing the hardmasks and recessing each fin, forming a cavity in the oxide over each fin; forming plural Si-based layers in each cavity with an increasing percentage of Ge or C or with an decreasing concentration of dopant from a bottom layer to a top layer; performing CMP for planarization to a top of the fins; recessing the oxide to a depth slightly below a top portion of the fin having a thickness equal to a thickness of each Si-based layer; and forming a high-k gate dielectric and a metal gate electrode over the plural Si-based layers.
Abstract:
One illustrative method disclosed herein includes forming a mandrel structure above a semiconductor substrate, performing an oxidation process to oxidize at least a portion of the mandrel structure so as to thereby define oxidized regions on the mandrel structure, removing the oxidized regions to thereby defined a reduced thickness mandrel structure, forming a plurality of fins on the reduced thickness mandrel structure and performing an etching process to selectively remove at least a portion of the reduced thickness mandrel structure so as to thereby expose at least a portion of each of the fins.
Abstract:
A method of forming a multi-valued logic transistor with a small footprint and the resulting device are disclosed. Embodiments include forming plural fins on a silicon substrate, each fin covered with a hardmask; filling spaces between the fins and hard masks with an oxide; removing the hardmasks and recessing each fin, forming a cavity in the oxide over each fin; forming plural Si-based layers in each cavity with an increasing percentage of Ge or C or with an decreasing concentration of dopant from a bottom layer to a top layer; performing CMP for planarization to a top of the fins; recessing the oxide to a depth slightly below a top portion of the fin having a thickness equal to a thickness of each Si-based layer; and forming a high-k gate dielectric and a metal gate electrode over the plural Si-based layers.
Abstract:
A method of forming a multi-valued logic transistor with a small footprint and the resulting device are disclosed. Embodiments include forming plural fins on a silicon substrate, each fin covered with a hardmask; filling spaces between the fins and hard masks with an oxide; removing the hardmasks and recessing each fin, forming a cavity in the oxide over each fin; forming plural Si-based layers in each cavity with an increasing percentage of Ge or C or with an decreasing concentration of dopant from a bottom layer to a top layer; performing CMP for planarization to a top of the fins; recessing the oxide to a depth slightly below a top portion of the fin having a thickness equal to a thickness of each Si-based layer; and forming a high-k gate dielectric and a metal gate electrode over the plural Si-based layers.