摘要:
This relates to systems and methods for providing a system-on-a-substrate. In some embodiments, the necessary components for an entire system (e.g., a processor, memory, accelerometers, I/O circuitry, or any other suitable components) can be fabricated on a single microchip in “bare die” form. The die can, for example, be coupled to suitable flash memory through a substrate and flexible printed circuit board (“flex”). In some embodiments, the flex can extend past the substrate, die, or both, to allow additional, relatively large components to be coupled to the flex. In some embodiments, the die can be coupled to the flash memory through the flex and without a substrate. In some embodiments, component test points can be placed on the flash memory side of the substrate.
摘要:
This relates to systems and methods for providing a system-on-a-substrate. In some embodiments, the necessary components for an entire system (e.g., a processor, memory, accelerometers, I/O circuitry, or any other suitable components) can be fabricated on a single microchip in “bare die” form. The die can, for example, be coupled to suitable flash memory through a substrate and flexible printed circuit board (“flex”). In some embodiments, the flex can extend past the substrate, die, or both, to allow additional, relatively large components to be coupled to the flex. In some embodiments, the die can be coupled to the flash memory through the flex and without a substrate. In some embodiments, component test points can be placed on the flash memory side of the substrate.
摘要:
A see-through, near-eye mixed reality head mounted display (HMD) device includes left and right see-through display regions within which virtual images are displayable. These left and right see-through display regions each having a transmittance that is less than one hundred percent. The see-through, near-eye mixed reality HMD device also includes a see-through transmittance compensation mask that includes a left window through which the left see-through display region is visible and a right window through which the right see-through display region is visible. In accordance with various embodiments, the see-through transmittance compensation mask is used to provide a substantially uniform transmittance across the field-of-view of a user wearing the HMD device.
摘要:
Electronic devices and accessories are provided that may communicate over wired communications paths. The electronic devices may be portable electronic devices such as cellular telephones or media players and may have audio connectors such as 3.5 mm audio jacks. The accessories may be headsets or other equipment having mating 3.5 mm audio plugs and speakers for playing audio. Microphones may be included in an accessory to gather voice signals and noise cancellation signals. Analog-to-digital converter circuitry in the accessory may digitize the microphone signals. Digital voice signals and voice noise cancellation signals can be transmitted over the communications path and processed by audio digital signal processor circuitry in an electronic device. Digital-to-analog converter circuitry in the accessory may convert digital audio signals to analog speaker signals. Digital noise cancellation signals may use digital noise signals to cancel noise from digital audio signals that have been received from an electronic device.
摘要:
Electronic devices and equipment may communicate over a wired communications path. The wired communications path may include one or more wires and may be associated with a headphone cable. Data may be conveyed in the form of a digital data stream containing multiple traffic channels. The digital data stream may include superframes, each of which has multiple frames of data. The frames of data may each contain a number of data slots. Some of the slots in a superframe may be used exclusively by a particular one of the traffic channels. Boundary slots may be shared between traffic channels. Data interface circuitry may implement a data dispersion algorithm that determines the pattern in which data from each traffic channel is distributed within each boundary slot. Transmitting data interface circuitry may merge traffic channels into a single data stream. Receiving data interface circuitry may reconstruct the traffic channels.
摘要:
A media processing system and device with improved power usage characteristics, improved audio functionality and improved media security is provided. Embodiments of the media processing system include an audio processing subsystem that operates independently of the host processor for long periods of time, allowing the host processor to enter a low power state while the audio data is being processed. Other aspects of the media processing system provide for enhanced audio effects such as mixing stored audio samples into real-time telephone audio. Still other aspects of the media processing system provide for improved media security due to the isolation of decrypted audio data from the host processor.
摘要:
A media processing system and device with improved power usage characteristics, improved audio functionality and improved media security is provided. Embodiments of the media processing system include an audio processing subsystem that operates independently of the host processor for long periods of time, allowing the host processor to enter a low power state while the audio data is being processed. Other aspects of the media processing system provide for enhanced audio effects such as mixing stored audio samples into real-time telephone audio. Still other aspects of the media processing system provide for improved media security due to the isolation of decrypted audio data from the host processor.
摘要:
Compact sub-assemblies of flexible circuits and drivers are provided. The sub-assemblies can occupy less space in an electronic device than conventional sub-assemblies. In one or more embodiments of the present invention, the flexible circuits can be attached to or wires can be disposed on portions of the substrate that previously were unoccupied in conventional sub-assemblies. In one or more embodiments, the sub-assemblies of the present invention also can have wires disposed underneath the driver or vary the width of the wires. In one or more embodiments, the sub-assemblies of the present invention also can have composite wires that occupy less space than wires of conventional sub-assemblies, while still maintaining similar energy flux.
摘要:
Methods for generating and displaying images associated with one or more virtual objects within an augmented reality environment at a frame rate that is greater than a rendering frame rate are described. The rendering frame rate may correspond with the minimum time to render images associated with a pose of a head-mounted display device (HMD). In some embodiments, the HMD may determine a predicted pose associated with a future position and orientation of the HMD, generate a pre-rendered image based on the predicted pose, determine an updated pose associated with the HMD subsequent to generating the pre-rendered image, generate an updated image based on the updated pose and the pre-rendered image, and display the updated image on the HMD. The updated image may be generated via a homographic transformation and/or a pixel offset adjustment of the pre-rendered image by circuitry within the display.
摘要:
Electronic devices and accessories are provided that may communicate over wired communications paths. The electronic devices may be portable electronic devices such as cellular telephones or media players and may have audio connectors such as 3.5 mm audio jacks. The accessories may be headsets or other equipment having mating 3.5 mm audio plugs and speakers for playing audio. Microphones may be included in an accessory to gather voice signals and noise cancellation signals. Analog-to-digital converter circuitry in the accessory may digitize the microphone signals. Digital voice signals and voice noise cancellation signals can be transmitted over the communications path and processed by audio digital signal processor circuitry in an electronic device. Digital-to-analog converter circuitry in the accessory may convert digital audio signals to analog speaker signals. Digital noise cancellation signals may use digital noise signals to cancel noise from digital audio signals that have been received from an electronic device.