摘要:
Very high resistance values may be necessary in integrated circuits, for example in the gigaohm range, for example for realizing RC times of 1 ms to 1 s. Such resistance values cannot or substantially not be realized by known methods in standard i.c. processes because of the too large space occupation. In addition, known embodiments are usually strongly dependent on the temperature. According to the invention, therefore, two zener diodes (10, 4; 11, 4) connected back-to-back are used as the resistor. The current through each zener diode is mainly determined by band--band tunneling when the voltage is not too high, for example up to approximately 0.2 V. This current has a value such that resistors in the giga range can be readily realized on a small surface area. Since the current is mainly determined by intrinsic material properties of silicon, the temperature dependence is very small. The resistor may furthermore be manufactured in any standard CMOS process or bipolar process.
摘要:
A semiconductor device with a tunnel diode comprises two mutually adjoining semiconductor regions (2, 3) of opposed conductivity types having high enough doping concentrations to provide a tunneling junction. Portions (2A, 3A) of the semiconductor regions adjoining the junction comprise a mixed crystal of silicon and germanium. The doping concentration of both phosphorus and boron are substantially increased, given the same amount of dopants being offered as during the formation of the remainder of the regions. The tunneling efficiency is substantially improved, and also because of the reduced bandgap of said portions (2A, 3A). A much steeper current-voltage characteristic both in the forward and in the reverse direction is achieved. Thus, the tunneling pn junction can be used as a transition between two conventional diodes which are stacked one on the other and formed in a single epitaxial growing process. The doping concentration may be 6×1019 or even more than 1020 at/cm3. A simple method of manufacturing such a device is preferably done at a temperature between 550° C. and 800° C.
摘要:
A tunnel transistor includes source diffusion (4) of opposite conductivity type to a drain diffusion (6) so that a depletion layer is formed between source and drain diffusions in a lower doped region (8). An insulated gate (16) controls the position and thickness of the depletion layer. The device includes a quantum well formed in accumulation layer (20) which is made of a different material to the lower layer (2) and cap layer (22).
摘要:
An electronic device comprising a generator for generating a stream of charge carriers. The generator comprises a bipolar transistor having an emitter region, a collector region and a base region oriented between the emitter region and the collector region, and a controller for controlling exposure of the bipolar transistor to a voltage in excess of its open base breakdown voltage (BVCEO) such that the emitter region generates the stream of charge carriers from a first area being smaller than the emitter region surface area. The electronic device may further comprise a material arranged to receive the stream of charge carriers for triggering a change in a property of said material, the emitter region being arranged between the base region and the material.
摘要:
A thermally programmable memory has a programmable element (20) of a thermally programmable resistance preferably of phase change material, material and a blown antifuse (80) located adjacent to the programmable material. Such a blown antifuse has a dielectric layer (100) surrounded by conductive layers (90, 110) to enable a brief high voltage to be applied across the dielectric to blow a small hole in the dielectric during manufacture to form a small conductive path which can be used as a tiny electrical heater for programming the material. Due to the current confinement by the hole, the volume of the material that must be heated in order to switch to a highly-resistive state is very small. As a result the programming power can be low.
摘要:
A semiconductor device with a tunnel diode (23) is particularly suitable for various applications. Such a device comprises two mutually adjoining semiconductor regions (2, 3) of opposed conductivity types and having doping concentrations which are so high that breakdown between them leads to conduction by means of tunnelling. A disadvantage of the known device is that the current-voltage characteristic is not yet steep enough for some applications. In a device according to the invention, the portions (2A, 3A) of the semiconductor regions (2, 3) adjoining the junction (23) comprise a mixed crystal of silicon and germanium. It is surprisingly found that the doping concentration of both phosphorus and boron are substantially increased, given the same amount of dopants being offered as during the formation of the remainder of the regions (2, 3). The tunnelling efficiency is substantially improved as a result of this, and also because of the reduced bandgap of said portions (2A, 3A), and the device according to the invention has a much steeper current-voltage characteristic both in the forward and in the reverse direction. This opens perspectives for inter alia an attractive application where the tunnelling pn junction (23) is used as a transition between two conventional diodes, for example pn or pin diodes, which are used one stacked on the other and which can be formed in a single epitaxial growing process thanks to the invention. The portions (2A, 3A) adjoining the tunnelling junction (22) are preferably 5 to 30 nm thick and comprise between 10 and 50 at % germanium. The doping concentration may be 6×1019 or even more than 1020 at/cm3. The invention further relates to a simple method of manufacturing a device according to the invention. This is preferably done at a temperature of between 550° C. and 800° C.
摘要:
A control circuit for a transistor arrangement comprises a monitoring arrangement (60) for monitoring the current flow and voltage across the transistor arrangement (50) and means (62) for determining if the current and voltage values define an operating point which falls within a stable operating region. The stable operating region comprises a region having a boundary (30) which comprises an electro-thermal instability line.
摘要:
A semiconductor device, such as a MOSFET or PN diode rectifier, has a p-n junction (24) between a first device region (23) and an underlying voltage-sustaining zone (20). Trenched field-shaping regions (40) extend through the voltage-sustaining zone (20) to improve the voltage-blocking and on-resistance characteristics of the device. The trenched field-shaping region (40) comprises a resistive path (42) accommodated in a trench (41) that has an insulating layer (44) at its side-walls. The insulating layer (44) dielectrically couples potential from the resistive path (42) to the voltage-sustaining zone (20) that is depleted in a voltage-blocking mode of operation of the device. The insulating layer (44) extends at the side-walls of the trench (41) to an upper level (81) that is higher than a lower level (82) at which the resistive path (42) starts in the trench (41). This lower level (82) is more closely aligned to the p-n junction (24) and is protected by the insulating layer (44) extending to the higher level (81). This construction enables the electric field distribution in the voltage-sustaining zone (20) to be improved by aligning very closely the start of the potential drop along the resistive path (42) with the p-n junction depth (d).
摘要:
The invention relates to a so-called punch-through diode with a mesa (12) comprising, in succession, a first (1), a second (2) and a third (3) semiconductor region (1) of, respectively, a first, a second and the first conductivity type, which punch-through diode is provided with two connection conductors (5, 6). During operation of said diode, a voltage is applied such that the second semiconductor region (2) is fully depleted. A drawback of the known punch-through diode resides in that the current flow is too large at lower voltages. In a punch-through diode according to the invention, a part (2A, 2B) of the second semiconductor region (2), which, viewed in projection, borders on the edge of the mesa (12), is provided with a larger flux of doping atoms of the second conductivity type than the remainder (2A) of the second semiconductor region (2). It has been found that the high current at a low voltage of the known diode is caused by the fact that the second semiconductor region (2) at the edge of the mesa (12) is depleted before the remainder of the second semiconductor region (2). By locally increasing the flux of doping atoms, the depletion at the edge is delayed as compared to the remainder of the second semiconductor region. Preferably, this result is obtained by locally increasing the thickness of the second semiconductor region (2). In this manner, a substantial current reduction at lower voltages is obtained in the diode in accordance with the invention.
摘要:
A control circuit for a transistor arrangement comprises a monitoring arrangement (60) for monitoring the current flow and voltage across the transistor arrangement (50) and means (62) for determining if the current and voltage values define an operating point which falls within a stable operating region. The stable operating region comprises a region having a boundary (30) which comprises an electro-thermal instability line.