摘要:
The present invention provides an imageable element, which includes: a substrate; a crosslinked layer disposed on the substrate; and an imageable ink-receptive layer disposed on the crosslinked layer, the imageable ink-receptive layer including an ablation free imageable composition. The present invention provides methods of producing the above imaged element.
摘要:
Thermally imageable elements and methods for their preparation and use are disclosed. The elements contain, in order, a substrate; an underlayer; and an ink-repellent layer. The underlayer contains a crosslinked allyl functional polyurethane. A photothermal conversion material is present in either in the underlayer or in an absorber layer between the underlayer and the ink-repellent layer. Thermal imaging and development removes the ink-repellent layer and reveals the underlayer in the exposed regions to form an imaged element useful as a waterless lithographic printing plate.
摘要:
QHB-Modified free radical polymerizable compounds and free radical polymerizable compositions that comprise these compounds are disclosed. A QBH-modified free radical polymerizable compound has at least one moiety that comprises at least one free radical polymerizable group; a supporting backbone, and at least one and preferably at least two moieties capable of forming four or more, typically four, hydrogen bonds with similar or complementary units on other molecules or portions of molecules. Free radical polymerizable compositions that contain these compounds may be used in any of the well-known applications for free radical polymerizable compositions. They are especially useful for the formation of imageable elements useful as lithographic printing plate precursors.
摘要:
The present invention includes a radiation-imageable element for lithographic printing having a hydrophilic anodized aluminum base with a surface having pores and a image-forming layer having polymer particles coated on the aluminum base. The ratio of the average pore diameter to the average particle diameter is from 0.4:1 to 10:1. The present invention further includes a method of producing the imaged element. The method includes the steps of imagewise exposing the radiation-imageable element to radiation to produce exposed and unexposed regions and contacting the imagewise exposed radiation-imageable element and a developer to remove the exposed or the unexposed regions.
摘要:
The present invention relates to a negative-working radiation imageable lithographic printing plate precursor, preferably having only two polymeric layers on a support. The first (bottom) layer is composed of oleophilic polymers and a photothermal converter which converts radiation to heat. The second polymeric layer (top) is composed of crosslinked hydrophilic polymers which absorb aqueous fountain solution and repel ink. The oleophilic polymers in the first layer contain functional groups are interlayer chemically bonded to the hydrophilic polymer in the second layer to provide interlayer adhesive bonding between the two layers. The plate is imagewise exposed to radiation, such as with an IR laser, resulting in non-ablative adhesion-weakening between the two layers so that the plate can be developed by fountain solution and/or ink on press whereby the top layer in the exposed area is removed on the press to reveal the ink-receptive image area. The top layer in the unexposed area remains as the non-image area.
摘要:
Presensitized lithographic plates are prepared which permit direct formation of printable images on plates by digital computerization without the intervening formation of a photographic image with a quality that allows the plates to be used for high volume printing applications. The lithographic printing plate has a structure which contains a substrate; a positive or negative working photosensitive layer; and a thermally sensitive masking layer which is opaque to the actinic radiation but which is soluble in an aqueous medium. The masking layer contains a heat softenable disperse phase which is insoluble in the aqueous medium; a polymeric continuous phase which is soluble or swellable in the aqueous medium; and a colorant which strongly absorbs radiant energy and converts the radiant energy to heat. In use the masking layer is digitally exposed to a computer controlled laser image so that exposed image areas of the masking are insolublized in the aqueous medium; soluble areas of the mask layer are then removed to form an opaque image mask on the photosensitive layer which is then exposed to actinic radiation passing through the mask to solubilize or insolubilize exposed areas of the photosensitive layer; the photosensitive layer is then developed with the developer liquid to remove the soluble areas and any overlying mask areas to form the lithographic printing plate. Both wet and waterless lithographic printing plates may be digitally prepared in this manner.
摘要:
The present invention also includes an imageable element, comprising a substrate and a thermally imageable composition comprising a thermally sensitive polymer which exhibits an increased solubility in an aqueous developer solution upon heating. The thermally sensitive polymer includes at least one covalently bonded unit and at least one thermally reversible non-covalently bonded unit, which includes a two or more centered H-bond within each of the non-covalently bonded unit. The present invention also includes a method of producing the imaged element. The present invention still further includes a thermally imageable composition comprising comprising a thermally sensitive polymer according to the present invention and a process for preparing the thermally sensitive polymer, which is a supramolecular polymer. The process includes contacting a hydrocarbyl-substituted isocytosine and a diisocyanate to produce a mono-adduct and contacting the mono-adduct and a polyfunctional material to produce the supramolecular polymer.
摘要:
The present invention relates to a polymerizable coating composition suitable for the manufacture of printing plates developable on-press. The coating composition comprises (i) a polymerizable compound and (ii) a polymeric binder comprising polyethylene oxide segments, wherein the polymeric binder is selected from the group consisting of at least one graft copolymer comprising a main chain polymer and polyethylene oxide side chains, a block copolymer having at least one polyethylene oxide block and at least one non-polyethylene oxide block, and a combination thereof. The invention is also directed to an imageable element comprising a substrate and the polymerizable coating composition.
摘要:
The present invention provides an imageable element including a lithographic substrate and an imageable layer disposed on the substrate. The imageable layer includes a radically polymerizable component, an initiator system capable of generating radicals sufficient to initiate a polymerization reaction upon exposure to imaging radiation, and a polymeric binder having a hydrophobic backbone and including both constitutional units having a pendant cyano group attached directly to the hydrophobic backbone, and constitutional units having a pendant group including a hydrophilic poly(alkylene oxide) segment. When the imageable element is imaged and developed, the resulting printing plate may exhibit improved on-press solvent resistance and longer press life.
摘要:
The present invention also includes an imageable element, comprising a substrate and a thermally imageable composition comprising a thermally sensitive polymer which exhibits an increased solubility in an aqueous developer solution upon heating. The thermally sensitive polymer includes at least one covalently bonded unit and at least one thermally reversible non-covalently bonded unit, which includes a two or more centered H-bond within each of the non-covalently bonded unit. The present invention also includes a method of producing the imaged element. The present invention still further includes a thermally imageable composition comprising comprising a thermally sensitive polymer according to the present invention and a process for preparing the thermally sensitive polymer, which is a supramolecular polymer. The process includes contacting a hydrocarbyl-substituted isocytosine and a diisocyanate to produce a mono-adduct and contacting the mono-adduct and a polyfunctional material to produce the supramolecular polymer.