摘要:
A process is for material-removing machining, on both sides simultaneously, of semiconductor wafers having a front surface and a back surface, the semiconductor wafers resting in carriers which are set in rotation by means of an annular outer drive ring and an annular inner drive ring and being moved between two oppositely rotating working disks in a manner which can be described by means of in each case one path curve relative to the upper working disk and one path curve relative to the lower working disk, wherein the two path curves after six loops around the center have the appearance of still being open, and at each point have a radius of curvature which is at least as great as the radius of the inner drive ring.
摘要:
A process for the double-side polishing of semiconductor wafers between two polishing plates which rotate in opposite directions and are covered with polishing cloth, so that at least 2 &mgr;m of semiconductor material is removed. The semiconductor wafers lay in plastic-lined cutouts in a set of a plurality of planar carriers which are made from steel and the mean thickness of which is 2 to 20 &mgr;m smaller than the mean thickness of the fully polished semiconductor wafers. The set comprises only those carriers whose difference in thickness is at most 5 &mgr;m, and each carrier belonging to the set has at least one unambiguous identification feature which assigns it to the set. An item of information contained in the identification feature is used in order for the plastic linings to be exchanged at fixed intervals and to ensure that the semiconductor wafers remain in the same order after the polishing as before the polishing. There is also a carrier which is suitable for carrying out the process.
摘要:
A semiconductor wafer has a front surface and a back surface and flatness values based on partial areas of a surface grid on the front surface of the semiconductor wafer, which has a maximum local flatness value SFQRmax of less than or equal to 0.13 &mgr;m and individual SFQR values which in a peripheral area of the semiconductor wafer do not differ significantly from those in a central area of the semiconductor wafer. There is also a process for producing this semiconductor wafer, wherein the starting thickness of the semiconductor wafer is 20 to 200 &mgr;m greater than the thickness of the carrier and the semiconductor wafer is polished until the end thickness of the semiconductor wafer is 2 to 20 &mgr;m greater than the thickness of the carrier.
摘要:
A semiconductor wafer has a front surface and a back surface and flatness values based on partial areas of a surface grid on the front surface of the semiconductor wafer, which has a maximum local flatness value SFQRmax of less than or equal to 0.13 &mgr;m and individual SFQR values which in a peripheral area of the semiconductor wafer do not differ significantly from those in a central area of the semiconductor wafer. There is also a process for producing this semiconductor wafer, wherein the starting thickness of the semiconductor wafer is 20 to 200 &mgr;m greater than the thickness of the carrier and the semiconductor wafer is polished until the end thickness of the semiconductor wafer is 2 to 20 &mgr;m greater than the thickness of the carrier.
摘要:
A semiconductor wafer with a front surface and a back surface and an epitaxial layer of semiconducting material deposited on the front surface. In the semiconductor wafer, the epitaxial layer has a maximum local flatness value SFQRmax of less than or equal to 0.13 μm and a maximum density of 0.14 scattered light centers per cm2. The front surface of the semiconductor wafer, prior to the deposition of the epitaxial layer, has a surface roughness of 0.05 to 0.29 nm RMS, measured by AFM on a 1 μm×1 μm reference area. Furthermore, there is a process for producing the semiconductor wafer. The process includes the following process steps: (a) as a single polishing step, simultaneous polishing of the front surface and of the back surface of the semiconductor wafer between rotating polishing plates while an alkaline polishing slurry is being supplied, the semiconductor wafer lying in a cutout of a carrier whose thickness is dimensioned to be 2 to 20 μm less than the thickness of the semiconductor wafer after the latter has been polished; (b) simultaneous treatment of the front surface and of the back surface of the semiconductor wafer between rotating polishing plates while a liquid containing at least one polyhydric alcohol having 2 to 6 carbon atoms is being supplied; (c) cleaning and drying of the semiconductor wafer; and (d) deposition of the epitaxial layer on the front surface of the semiconductor wafer produced in accordance with steps (a) to (c).
摘要:
A process for producing semiconductor wafers by double-sided polishing between two rotating, upper and lower polishing plates, which are covered with polishing cloth, while an alkaline polishing abrasive with colloidal solid fractions is being supplied, the semiconductor wafers being guided by carriers which have circumferential gear teeth and are set in rotation by complementary outer gear teeth and inner gear teeth of the polishing machine, which is distinguished by the following process steps: (a) at least one of the two sets of gear teeth of the polishing machine is at least from time to time sprayed with a liquid which substantially comprises water, (b) the alkaline polishing abrasive is fed continuously to the semiconductor wafers in a closed supply device. There is also a device which is suitable for carrying out the process.
摘要:
A silicon semiconductor wafer with a diameter of greater than or equal to 200 mm and a polished front surface and a polished back surface and a maximum local flatness value SFQRmax of less than or equal to 0.13 μm, based on a surface grid of segments with a size of 26 mm×8 mm on the front surface, wherein the maximum local height deviation P/V(10×10)max of the front surface from an ideal plane is less than or equal to 70 nm, based on sliding subregions with dimensions of 10 mm×10 mm. There is also a process for producing a multiplicity of silicon semiconductor wafers by simultaneous double-side polishing between in each case one lower polishing plate and one upper polishing plate, which rotate, are parallel to one another and to which polishing cloth has been adhesively bonded, while a polishing agent, which contains abrasives or colloids, is being supplied, with at least 2 μm of silicon being removed, wherein a predetermined proportion of the semiconductor wafers is at least partially polished using a lower polishing pressure, and a further proportion of the semiconductor wafers is polished using a higher polishing pressure.
摘要:
A machine tool for cutting machining of work pieces has a tool spindle and a work piece spindle. The work piece spindle is a hollow spindle having a through hole extending through the spindle and a holding mechanism for holding a work piece at one end. The work piece held in the holding mechanism can be machined through the through hole by means of a machining tool held in the tool spindle.
摘要:
A machine tool for cutting machining of work pieces has a tool spindle and a work piece spindle. The work piece spindle is a hollow spindle having a through hole extending through the spindle and a holding mechanism for holding a work piece at one end. The work piece held in the holding mechanism can be machined through the through hole by means of a machining tool held in the tool spindle.
摘要:
The invention describes nucleic acid molecules encoding cytochrome P450-t proteins involved in the brassionosteroid synthesis in plants, transgenic plant cells and plants containing such nucleic acid molecules as well as processes for the identification of other proteins involved in brassinosteroid synthesis and processes for the identification of substances acting as brassinosteroids or as brassinosteroid inhibitors in plants.