Abstract:
The present invention provides a light emitting device comprising a first light emitting portion that emits white light at a color temperature of 6000K or more and a second light emitting portion that emits white light at a color temperature of 3000K or less, which include light emitting diode chips and phosphors and are independently driven. The present invention has an advantage in that a light emitting device can be diversely applied in a desired atmosphere and use by realizing white light with different light spectrums and color temperatures. Particularly, the present invention has the effect on health by adjusting the wavelength of light or the color temperature according to the circadian rhythm of humans.
Abstract:
A luminescent material is disclosed. The luminescent material may include a first compound having a host lattice comprising first ions and oxygen. A first portion of the first ions may be substituted by copper ions. In one embodiment, the host lattice may include silicon, the copper ions may be divalent copper ions and the first compound may have an Olivin crystal structure, a β-K2SO4 crystal structure, a trigonal Glaserite (K3Na(SO4)2) or monoclinic Merwinite crystal structure, a tetragonal Ackermanite crystal structure, a tetragonal crystal structure or an orthorhombic crystal structure. In another embodiment, the copper ions do not act as luminescent ions upon excitation with the ultraviolet or visible light.
Abstract translation:公开了一种发光材料。 发光材料可以包括具有包含第一离子和氧的主晶格的第一化合物。 第一离子的第一部分可以被铜离子取代。 在一个实施例中,主晶格可以包括硅,铜离子可以是二价铜离子,并且第一化合物可以具有橄榄石晶体结构,β-K 2 SO 4 >晶体结构,三角晶硅酸盐(K 3 N 3 O 3 SO 4 SO 2)或单斜晶系的Merwinite晶体结构,四方晶系晶体结构, 四方晶体结构或正交晶体结构。 在另一个实施方案中,当用紫外线或可见光激发时,铜离子不作为发光离子。
Abstract:
A light emitting device is disclosed. The light emitting device may include a light emitting diode (LED) for emitting light and a phosphor adjacent to the LED. The phosphor may be excitable by light emitted by the LED and may include a first compound having a host lattice comprising first ions and oxygen. In one embodiment, the host lattice may include silicon, the copper ions may be divalent copper ions and the first compound may have an Olivin crystal structure, a β-K2SO4 crystal structure, a trigonal Glaserite (K3Na(SO4)2) or monoclinic Merwinite crystal structure, a tetragonal Ackermanite crystal structure, a tetragonal crystal structure or an orthorhombic crystal structure. In another embodiment, the copper ions do not act as luminescent ions upon excitation with the light emitted by the LED.
Abstract translation:公开了一种发光器件。 发光器件可以包括用于发射光的发光二极管(LED)和与LED相邻的磷光体。 磷光体可以由LED发出的光可激发,并且可以包括具有包含第一离子和氧的主晶格的第一化合物。 在一个实施方案中,主晶格可以包括硅,铜离子可以是二价铜离子,并且第一化合物可以具有橄榄石晶体结构,β-K 2 SO 4晶体结构,三角形镓石(K 3 N 3) Na(SO 4 SO 2)2)或单斜晶系的Merwinite晶体结构,四方晶系晶体结构,四方晶系结构或正交晶体结构。 在另一个实施方案中,当由LED发射的光激发时,铜离子不起荧光离子的作用。
Abstract:
Disclosed herein is a light emitting device including at least three light emitting diodes having different peak emission wavelengths to primarily emit light in a blue, green or red wavelength range, and a wavelength-conversion means to convert primary light into secondary light in a visible light wavelength range, The light emitting device of the current invention has a high color temperature of 2,000 to 8,000 K or 10,000 K and a high color rendering index of 90 or more, and emits yellow-green light or orange light having a wide emission wavelength range. Since the light emitting device having high color temperature and excellent color rendering properties can easily realize desired emission on the color coordinate system, it is applicable to mobile phones, notebook computers, and keypads or backlight units for various electronic products, and in particular, automobiles and exterior and interior lighting fixtures.
Abstract:
A luminescent material is disclosed. The luminescent material may include a first compound having a host lattice comprising first ions and oxygen. A first portion of the first ions may be substituted by copper ions. In one embodiment, the host lattice may include silicon, the copper ions may be divalent copper ions and the first compound may have an Olivine crystal structure, β-K2SO4 crystal structure, a trigonal Glaserite (K3Na(SO4)2) or monoclinic Merwinite crystal structure, a tetragonal Ackermanite crystal structure, a tetragonal crystal structure or an orthorhombic crystal structure. In another embodiment, the copper ions do not act as luminescent ions upon excitation with the ultraviolet or visible light.
Abstract translation:公开了一种发光材料。 发光材料可以包括具有包含第一离子和氧的主晶格的第一化合物。 第一离子的第一部分可以被铜离子取代。 在一个实施方案中,主晶格可以包括硅,铜离子可以是二价铜离子,并且第一化合物可以具有橄榄石晶体结构,K 2 SO 4晶体结构,三角晶硅酸盐(K3Na(SO4)2))或单斜晶系 晶体结构,四方晶系晶体结构,四方晶体结构或正交晶体结构。 在另一个实施方案中,当用紫外线或可见光激发时,铜离子不作为发光离子。
Abstract:
A light emitting device can be characterized as including a light emitting diode configured to emit light and a phosphor configured to change a wavelength of the light. The phosphor substantially covers at least a portion of the light emitting diode. The phosphor includes a compound having a host material. Divalent copper ions and oxygen are components of the host material.
Abstract:
The present invention relates to a light emitting diode and a method of fabricating the same, wherein the distance between a fluorescent substance and a light emitting diode chip is uniformly maintained to enhance luminous efficiency. To this end, there is provided a light emitting diode comprising at least one light emitting diode chip, lead terminals for use in applying electric power to the light emitting diode chip, and a frame that is used for mounting the light emitting diode chip thereon and is formed to have a predetermined height and a shape corresponding to that of the light emitting diode chip.
Abstract:
The present invention relates to a light emitting element with arrayed cells, a method of manufacturing the same, and a light emitting device using the same. The present invention provides a light emitting element including a light emitting cell block with a plurality of light emitting cells connected in series or parallel on a single substrate, and a method of manufacturing the same, wherein each of the plurality of light emitting cells includes an N-type semiconductor layer and a P-type semiconductor layer, and the N-type semiconductor layer of one light emitting cell is electrically connected to the P-type semiconductor layer of another adjacent light emitting cell. Further, the present invention provides a light emitting device including a light emitting element with a plurality of light emitting cells connected in series. Accordingly, it is possible to simplify a manufacturing process of a light emitting device for illumination capable of being used with a household AC power source, to decrease a fraction defective occurring in manufacturing a light emitting device for illumination, and to mass-produce the light emitting device for illumination. Further, there is an advantage in that DC driving efficiency can be enhanced in an AC operation by installing a predetermined rectifying circuit outside the light emitting element.
Abstract:
The present invention relates to a light emitting device including a light emitting element having a plurality of light emitting cells arranged on a substrate, a first electrode arranged on each light emitting cell of the plurality of light emitting cells, a second electrode arranged between the substrate and each light emitting cell of the plurality of light emitting cells, the second electrode being disposed to face the first electrode. The light emitting device also includes a conductive material electrically connecting the second electrode arranged under a first light emitting cell of the plurality of light emitting cells to the first electrode arranged on an adjacent second light emitting cell of the plurality of light emitting cells, and a control unit configured to control waveforms of a voltage and a current applied to the light emitting element.
Abstract:
The present invention relates to a light emitting element with arrayed cells, a method of manufacturing the same, and a light emitting device using the same. The present invention provides a light emitting element including a light emitting cell block with a plurality of light emitting cells connected in series or parallel on a single substrate, and a method of manufacturing the same, wherein each of the plurality of light emitting cells includes an N-type semiconductor layer and a P-type semiconductor layer, and the N-type semiconductor layer of one light emitting cell is electrically connected to the P-type semiconductor layer of another adjacent light emitting cell. Further, the present invention provides a light emitting device including a light emitting element with a plurality of light emitting cells connected in series. Accordingly, it is possible to simplify a manufacturing process of a light emitting device for illumination capable of being used with a household AC power source, to decrease a fraction defective occurring in manufacturing a light emitting device for illumination, and to mass-produce the light emitting device for illumination. Further, there is an advantage in that DC driving efficiency can be enhanced in an AC operation by installing a predetermined rectifying circuit outside the light emitting element.