Abstract:
According to the present invention, a plasma processing apparatus includes an analysis unit that obtains wavelengths of the light correlated with a plasma processing result, selects, from the obtained wavelengths, a wavelength having a first factor that represents a deviation in an intensity distribution of the light and is larger than a first predetermined value, and predicts the plasma processing result using the selected wavelength, or an analysis unit that obtains values computed using each of light intensities of a plurality of wavelengths and correlated with the plasma processing result, selects, from the obtained values, a value having a second factor that represents a deviation in a distribution of the obtained values and is larger than a second predetermined value, and predicts the plasma processing result using the selected value.
Abstract:
There is provided a method of analyzing data obtained from an etching apparatus for micromachining a wafer using plasma. This method includes the following steps: acquiring the plasma light-emission data indicating light-emission intensities at a plurality of different wavelengths and times, the plasma light-emission data being measured under a plurality of different etching processing conditions, and being obtained at the time of the etching processing, evaluating the relationship between changes in the etching processing conditions and changes in the light-emission intensities at the plurality of different wavelengths and times with respect to the wavelengths and times of the plasma light-emission data, and identifying the wavelength and the time of the plasma light-emission data based on the evaluation result, the wavelength and the time being to be used for the adjustment of the etching processing condition.
Abstract:
A plasma processing apparatus including: a monitor device which monitors a process quantity generated at plasma processing; a monitor value estimation unit which has monitor quantity variation models for storing change of a monitor value of the process quantity in accordance with the number of processed specimens and which estimates a monitor value for a process of a next specimen by referring to the monitor quantity variation models; and a control quantity calculation unit which stores a relation between a control quantity for controlling the process quantity of the vacuum processing device and a monitor value and which calculates the control quantity based on a deviation of the estimated monitor value from a target value to thereby control the process quantity for the process of the next specimen. Thus, a process model indicating variation of the state of a process processing apparatus can be added to a control loop in such run-to-run control that process conditions are changed according to each wafer process, so that stable processed results can be obtained even when variation occurs in processes.
Abstract:
A stable etching process is realized at an earlier stage by specifying the combination of wavelength and time interval, which exhibits a minimum prediction error of etching processing result within a short period. For this, the combination of wavelength and time interval is generated from wavelength band of plasma emission generated upon etching of the specimen, the prediction error upon prediction of etching process result is calculated with respect to each combination of wavelength and time interval, the wavelength combination is specified based on the calculated prediction error, the prediction error is further calculated by changing the time interval with respect to the specified wavelength combination, and the combination of wavelength and time interval, which exhibits the minimum value of calculated prediction error is selected as the wavelength and the time interval used for predicting the etching processing process.
Abstract:
A plasma processing apparatus, to which process control such as APC is applied, includes: a processing chamber in which plasma processing is performed on a sample; and a plasma processing control device which performs control to optimize a condition for plasma processing which recovers the status inside a processing chamber, in which plasma processing is performed, based on a waiting time from the time when plasma processing for a second lot, which is a lot immediately before a first lot, is completed to the time when plasma processing for the first lot is started, and the content of plasma processing for the second lot.
Abstract:
An etching apparatus calculates an emission intensity in the vicinity of each of a plurality of wavelengths, at which a specified element should emit light, from information indicating light emission measured by an optical emission spectroscope during etching processing and, if it is determined that the calculated emission intensity information and emission intensity information stored in a storage unit are similar, extracts a wavelength, corresponding to the calculated emission intensity, with the wavelength associated with the element.
Abstract:
In time-series data indicating light emission of plasma when plasma processing is carried out on a sample by generating the plasma, an analysis apparatus creates combinations of a plurality of light emission wavelengths of elements and a plurality of time intervals within a plasma processing interval and calculates, for each of the combinations of the wavelengths and the time intervals, a correlation between an average value of light emission intensity and the number of times the plasma processing is carried out on the samples for each of the combinations of the wavelengths and the time intervals that have been created. Thereafter, the data analysis apparatus selects, as a combination of the wavelength and the time interval used to observe or control the plasma processing, a combination of a wavelength of light emitting from a specific element and a specific time interval having a maximum correlation.
Abstract:
Provided is a plasma processing apparatus including a processing unit in which a sample is plasma processed and which includes a monitor (optical emission spectroscopy) that monitors light emission of plasma, wherein the processing unit includes a prediction model storage unit that stores a prediction model predicting a plasma processing result, and a control device in which the plasma processing result is predicted by using a prediction model selected based on light emission data and device data as an indicator of state change of the processing unit.
Abstract:
A plasma processing apparatus, to which process control such as APC is applied, includes: a processing chamber in which plasma processing is performed on a sample; and a plasma processing control device which performs control to optimize a condition for plasma processing which recovers the status inside a processing chamber, in which plasma processing is performed, based on a waiting time from the time when plasma processing for a second lot, which is a lot immediately before a first lot, is completed to the time when plasma processing for the first lot is started, and the content of plasma processing for the second lot.
Abstract:
A data management apparatus according to an embodiment of the present invention includes a data analyzing unit that processes operation data transferred from a data collecting unit that collects the operation data of a semiconductor manufacturing apparatus, and a state monitoring unit that monitors a state of the data analyzing unit based on monitoring time. The monitoring time is the sum of first time that is time required for transferring the operation data to the data analyzing unit and second time that is time required for processing the operation data in the data analyzing unit.