Abstract:
A stable etching process is realized at an earlier stage by specifying the combination of wavelength and time interval, which exhibits a minimum prediction error of etching processing result within a short period. For this, the combination of wavelength and time interval is generated from wavelength band of plasma emission generated upon etching of the specimen, the prediction error upon prediction of etching process result is calculated with respect to each combination of wavelength and time interval, the wavelength combination is specified based on the calculated prediction error, the prediction error is further calculated by changing the time interval with respect to the specified wavelength combination, and the combination of wavelength and time interval, which exhibits the minimum value of calculated prediction error is selected as the wavelength and the time interval used for predicting the etching processing process.
Abstract:
A plasma processing apparatus, to which process control such as APC is applied, includes: a processing chamber in which plasma processing is performed on a sample; and a plasma processing control device which performs control to optimize a condition for plasma processing which recovers the status inside a processing chamber, in which plasma processing is performed, based on a waiting time from the time when plasma processing for a second lot, which is a lot immediately before a first lot, is completed to the time when plasma processing for the first lot is started, and the content of plasma processing for the second lot.
Abstract:
An etching apparatus calculates an emission intensity in the vicinity of each of a plurality of wavelengths, at which a specified element should emit light, from information indicating light emission measured by an optical emission spectroscope during etching processing and, if it is determined that the calculated emission intensity information and emission intensity information stored in a storage unit are similar, extracts a wavelength, corresponding to the calculated emission intensity, with the wavelength associated with the element.
Abstract:
According to the present invention, a plasma processing apparatus includes an analysis unit that obtains wavelengths of the light correlated with a plasma processing result, selects, from the obtained wavelengths, a wavelength having a first factor that represents a deviation in an intensity distribution of the light and is larger than a first predetermined value, and predicts the plasma processing result using the selected wavelength, or an analysis unit that obtains values computed using each of light intensities of a plurality of wavelengths and correlated with the plasma processing result, selects, from the obtained values, a value having a second factor that represents a deviation in a distribution of the obtained values and is larger than a second predetermined value, and predicts the plasma processing result using the selected value.
Abstract:
There is provided a method of analyzing data obtained from an etching apparatus for micromachining a wafer using plasma. This method includes the following steps: acquiring the plasma light-emission data indicating light-emission intensities at a plurality of different wavelengths and times, the plasma light-emission data being measured under a plurality of different etching processing conditions, and being obtained at the time of the etching processing, evaluating the relationship between changes in the etching processing conditions and changes in the light-emission intensities at the plurality of different wavelengths and times with respect to the wavelengths and times of the plasma light-emission data, and identifying the wavelength and the time of the plasma light-emission data based on the evaluation result, the wavelength and the time being to be used for the adjustment of the etching processing condition.
Abstract:
A plasma processing apparatus including: a monitor device which monitors a process quantity generated at plasma processing; a monitor value estimation unit which has monitor quantity variation models for storing change of a monitor value of the process quantity in accordance with the number of processed specimens and which estimates a monitor value for a process of a next specimen by referring to the monitor quantity variation models; and a control quantity calculation unit which stores a relation between a control quantity for controlling the process quantity of the vacuum processing device and a monitor value and which calculates the control quantity based on a deviation of the estimated monitor value from a target value to thereby control the process quantity for the process of the next specimen. Thus, a process model indicating variation of the state of a process processing apparatus can be added to a control loop in such run-to-run control that process conditions are changed according to each wafer process, so that stable processed results can be obtained even when variation occurs in processes.
Abstract:
A plasma processing apparatus, plasma processing method, and plasma processing analysis method in which a suitable combination of wavelength, time interval, and etching condition parameter for control to change etching conditions is determined among wavelengths, time intervals, and changeable parameters for spectroscopic measurement data in order to ensure stable etching conditions. Specifically, a regression equation which represents the correlation between emission intensity and etching result at a wavelength and a time interval is obtained for each of two or more combinations of wavelength, time interval, and etching condition parameter. Furthermore, for each of the combinations, the amount of change is calculated from the regression equation when the value set for the etching condition parameter is changed. Among the combinations, the combination for which the amount of change is the smallest is determined as the combination of wavelength, time interval, and changed etching condition parameter to be used for control.
Abstract:
A plasma processing apparatus including a processing chamber, a radio frequency power source, a monitoring unit, and a calculation unit is provided. In the processing chamber, etching target film is etched by using plasma. The radio frequency power source supplies radio frequency electric power. The monitoring unit monitors light emission of the plasma. The calculation unit estimates an etching amount of plasma etching of the etching target film based on an emission intensity and a correlation between the etching amount of the etching target film and the emission intensity, the emission intensity being obtained when removing, by using the plasma, a deposition film deposited as a result of the plasma etching.
Abstract:
A stable etching process is realized at an earlier stage by specifying the combination of wavelength and time interval, which exhibits a minimum prediction error of etching processing result within a short period. For this, the combination of wavelength and time interval is generated from wavelength band of plasma emission generated upon etching of the specimen, the prediction error upon prediction of etching process result is calculated with respect to each combination of wavelength and time interval, the wavelength combination is specified based on the calculated prediction error, the prediction error is further calculated by changing the time interval with respect to the specified wavelength combination, and the combination of wavelength and time interval, which exhibits the minimum value of calculated prediction error is selected as the wavelength and the time interval used for predicting the etching processing process.
Abstract:
The plasma processing apparatus includes a plasma processing unit that performs plasma processing of a sample and a control unit that controls the plasma processing. The control unit selects one of a plurality of the prediction models for predicting a result of the plasma processing based on a state of the plasma processing unit, and predicts the result of the plasma processing by using a selected prediction model.