Abstract:
The method for analyzing biomolecules, includes the steps of: immobilizing biomolecules to be analyzed on surfaces of magnetic microparticles; reacting labeled probe molecules with the biomolecules to be analyzed; collecting and immobilizing the microparticles on a support substrate; and measuring a label on the support substrate. Since single-molecule immobilized magnetic microparticles are used in the present invention, the number of biomolecules can be counted, and since hybridization and an antigen-antibody reaction are performed with the microparticles having biomolecules immobilized thereon dispersed, the reaction can be rapidly performed. Further, the type and the abundance of biomolecules of interest can be determined at a single molecular level, so as to evaluate, in particular, the absolute concentration of biomolecules.
Abstract:
The method for analyzing biomolecules, includes the steps of: immobilizing biomolecules to be analyzed on surfaces of magnetic microparticles; reacting labeled probe molecules with the biomolecules to be analyzed; collecting and immobilizing the microparticles on a support substrate; and measuring a label on the support substrate. Since single-molecule immobilized magnetic microparticles are used in the present invention, the number of biomolecules can be counted, and since hybridization and an antigen-antibody reaction are performed with the microparticles having biomolecules immobilized thereon dispersed, the reaction can be rapidly performed. Further, the type and the abundance of biomolecules of interest can be determined at a single molecular level, so as to evaluate, in particular, the absolute concentration of biomolecules.
Abstract:
Disclosed is a technique for binding microparticles to patterned bonding pads of a metal (e.g., gold) formed on a support. The microparticles each carry a nucleic acid synthetase or DNA probe immobilized thereon for capturing a nucleic acid sample fragment. The technique involves forming, on a support surface, a film having a thickness equivalent to that of the bonding pads; controlling the size of microparticles with respect to the size of bonding pads; and thereby immobilizing microparticles each bearing a single nucleic acid sample fragment to the bonding pads in a one-to-one manner in a grid form. This allows high-density regular alignment and immobilization of many types of nucleic acid fragment samples on a support and enables high-throughput analysis of nucleic acid samples. Typically, immobilization of microparticles at 1-micrometer intervals easily provides a high density of 106 nucleic acid fragments per square millimeter.
Abstract:
Paramagnetic fine particles of 1 micron or less used under a strong magnetic field were shown to form beads-like aggregates along the magnetic flux, and become irregularly shaped as such a mass of particles combines with a flat particle layer. This phenomenon becomes a factor that degrades the quality of quantification in bioanalysis. By confining a solution of microscopic magnetic fine particles between flat substrates of high wettability as thin a vertical thickness as possible and attracting the magnetic fine particles under a magnetic field applied from the side of one of the flat substrates, the magnetic fine particles can be evenly immobilized in the form of a film on the substrate surface in a dispersion state, and the quality of the biomolecule quantification can be improved.
Abstract:
An amount of gas remaining within a fluid control valve is reduced according to a method for fixing the fluid control valve to achieve highly accurate trace dispensation by simply removing gas. The dispensing device has a discharge nozzle, a liquid feeding tube that is disposed so as to connect a reagent bottle in which a reagent is stored and the discharge nozzle and forms a reagent flow path, and a fluid control valve that is disposed on the liquid feeding tube route connecting the reagent bottle and the discharge nozzle. The fluid control valve is provided with a reagent flow path having a liquid inlet and a liquid outlet and a diaphragm valve provided in the middle of the flow path. The fluid control valve is disposed in an orientation such that the diaphragm valve is disposed at the bottom of the flow path of the fluid control valve.
Abstract:
Biomolecules are specifically captured with magnetic particles and the biomolecules are labeled with fluorescence. A magnetic field generator, for attracting the magnetic particles to the support substrate, is provided on the reverse face of the support substrate, and an adhesion layer is provided on the surface of the support substrate to hold the magnetic particles. First, a dispersing solution for the magnetic particles is placed on the surface of the support substrate with the magnetic field in an off state. Next, the magnetic field is turned on, and the magnetic particles in solution are attracted to the support substrate surface. The magnetic particles colliding with the support substrate adhere to the adhesion layer of the support substrate surface, and then the magnetic field is turned off. Thus, aggregations can be broken up while the magnetic particles are held, and a magnetic particle layer on the support substrate can be a single layer.
Abstract:
Disclosed is a technique for binding microparticles to patterned bonding pads of a metal (e.g., gold) formed on a support. The microparticles each carry a nucleic acid synthetase or DNA probe immobilized thereon for capturing a nucleic acid sample fragment. The technique involves forming, on a support surface, a film having a thickness equivalent to that of the bonding pads; controlling the size of microparticles with respect to the size of bonding pads; and thereby immobilizing microparticles each bearing a single nucleic acid sample fragment to the bonding pads in a one-to-one manner in a grid form. This allows high-density regular alignment and immobilization of many types of nucleic acid fragment samples on a support and enables high-throughput analysis of nucleic acid samples. Typically, immobilization of microparticles at 1-micrometer intervals easily provides a high density of 106 nucleic acid fragments per square millimeter.
Abstract:
Biomolecules are specifically captured with magnetic particles and the biomolecules are labeled with fluorescence. A magnetic field generator, for attracting the magnetic particles to the support substrate, is provided on the reverse face of the support substrate, and an adhesion layer is provided on the surface of the support substrate to hold the magnetic particles. First, a dispersing solution for the magnetic particles is placed on the surface of the support substrate with the magnetic field in an off state. Next, the magnetic field is turned on, and the magnetic particles in solution are attracted to the support substrate surface. The magnetic particles colliding with the support substrate adhere to the adhesion layer of the support substrate surface, and then the magnetic field is turned off. Thus, aggregations can be broken up while the magnetic particles are held, and a magnetic particle layer on the support substrate can be a single layer.