Abstract:
Even if a generated wide-field image includes residual local misalignment, this charged particle microscope device can prompt for user input to correct such local misalignment, and can regenerate, on the basis of the user input, a wide-field image that includes little misalignment even in local areas of the overlap regions thereof. A charged particle microscope according to the present invention captures a plurality of images in such a way that each captured image has overlap regions that are to be overlapped with the overlap regions of captured images adjacent to that captured image, wherein an image processing unit: sets a pair of corresponding points in respective overlap regions of each two adjacent captured images; sets predetermined constraint conditions for each captured image; calculates the amounts of misalignment between the plurality of captured images on the basis of the set pairs of corresponding points and the set constraint conditions; connects the plurality of captured images to one another after correcting the misalignment between these captured images on the basis of the calculated amounts of misalignment, thereby generating a single wide-field image; calculates, for each of a plurality of local areas set in the overlap regions of each two adjacent captured images, a degree of reliability for the connection between these captured images; and notifies a user of either each found low reliability local area or the overlap region including that low reliability local area, as well as the set pairs of corresponding points and the set constraint conditions.
Abstract:
A scanning electron microscope capable of properly determining a step of a step pattern formed on a sample regardless of combination of material of a groove of the step pattern and material of a projection of the step pattern, the scanning electron microscope includes a beam source, a detection unit having a first detection unit that detects a secondary electron emitted from the sample at an angle between an optical axis direction of the primary electron beam which is equal to or less than a predetermined value, and a second detection unit that detects a secondary electron emitted from the sample at an angle between the optical axis direction of the primary electron beam which is greater than the predetermined value, and a processing unit to obtain information on the step pattern using the information on a ratio between signals outputted from the first and the second detection unit.
Abstract:
In order to enable high-speed imaging of a wide-field image, the imaging method using the electron microscope comprises: irradiating and scanning a wide-field region of the sample with a low-dose amount of electron beam, and acquiring a wide-field image of the sample; setting, from this wide-field image, a narrow-field region; irradiating and scanning this narrow-field region with a high-dose amount of the electron beam, and acquiring a narrow-field image of the sample; determining the noise-removal parameters for the acquired wide-field image and narrow-field image; performing image quality improvement processing on the wide-field image and the narrow-field image; performing drift correction on the narrow-field image undergone the image quality improvement processing; and combining the narrow-field image undergone this drift correction and the wide-field image in such a manner that the visibility of each is at the same level throughout the entirety of the combined image.
Abstract:
A charged-particle-beam device is provided with a data processing unit that removes, from a detector signal, the effect that scattering of a primary charged-particle beam before the primary charged-particle beam reaches a specimen has on the spot shape of the primary charged-particle beam. For example, when using an electron microscope to observe a specimen in a non-vacuum atmosphere, the effect that scattering of a primary charged-particle beam due to a barrier film or a gas present in a non-vacuum space has on the spot shape of the primary charged-particle beam is removed from a signal acquired by a detector. This makes it easy to obtain high-quality images.
Abstract:
In order to allow detecting backscattered electrons (BSEs) generated from the bottom of a hole for determining whether a hole with a super high aspect ratio is opened or for inspecting and measuring the ratio of the top diameter to the bottom diameter of a hole, which are typified in 3D-NAND processes of opening a hole, a primary electron beam accelerated at a high accelerating voltage is applied to a sample. Backscattered electrons (BSEs) at a low angle (e.g. a zenith angle of five degrees or more) are detected. Thus, the bottom of a hole is observed using “penetrating BSEs” having been emitted from the bottom of the hole and penetrated the side wall. Using the characteristics in which a penetrating distance is relatively prolonged through a deep hole and the amount of penetrating BSEs is decreased to cause a dark image, a calibration curve expressing the relationship between a hole depth and the brightness is given to measure the hole depth.
Abstract:
A scanning charged particle microscope apparatus includes image quality improvement unit which performs an image quality improvement process on image data which is obtained by detecting particles generated from a sample, the image quality improvement unit divides a region in which the image data is acquired into two or more regions on the basis of a distance from a region in which the image data within a visual field of a charged particle optical unit is not acquired, determines an image quality improvement processing method and a processing parameter for image quality improvement for the image data in each of the separate regions according to the separate regions; and performs an image quality improvement process on the image data in each of the separate regions by using the determined processing method and processing parameter corresponding to the separate region.