Abstract:
An analysis device of the present invention is provided with a sample introduction unit that introduces a sample into a mass spectroscope; a sample condensation unit that treats the sample introduced into the device; a detection unit that analyzes the sample treated by a treatment unit; and a control unit that controls the sample introduction unit, the sample condensation unit, and the detection unit. The sample introduction unit includes a sample introduction valve, and the sample condensation unit includes an elution valve and a cleaning valve, and the cleaning valve is disposed between the sample introduction valve and the elution valve.
Abstract:
A clinical laboratory apparatus includes a pretreating apparatus having a high separation capability and providing high data reproducibility and reliability and a mass spectrometer is provided which executes fully automatic processing from pretreatment to detection. The pretreating apparatus that includes a cartridge for holding an extraction agent for solid-phase extraction, a pressure-loading unit for applying a pressure load to any cartridge mounted on the solid-phase extraction cartridge-retaining unit, a receiving tray mechanism for receiving a sample extracted from the cartridge, and a liquid-level sensor for detecting liquid levels in the receiving tray as well as in the cartridge, conducts feedback control for the pressure-loading unit to open its pressure release valve upon the liquid-level sensor detecting that the liquid level in the receiving tray mechanism has reached a preset liquid-level position.
Abstract:
An analyzer includes a pretreatment device and a mass spectrometer. The pretreatment device includes a solid phase extraction mechanism. The mass spectrometer performs mass spectrometry on a sample pretreated by the pretreatment device and then subjected to ionization. The analyzer also includes a storage unit that stores data on dependence of signal intensities of the analyte substance to be measured and the internal standard upon the concentration of a substance inhibiting ionization in the sample, and that stores data on a recovery rate. The analyzer also includes a correcting unit that corrects measurement results of the sample and the internal standard on the basis of the data stored in the storage unit.
Abstract:
The present invention relates to a pretreatment apparatus that performs concentration and separation of a sample, and in particular, in order to provide a sample pretreatment apparatus using a solid-phase extraction column, and a mass spectrometer using the same, which is particularly suitable for clinical analysis in which qualitative/quantitative analysis of a biological sample such as blood is performed, according to each operational step for a solid-phase extraction treatment, for example, a collection device serving as flow passages or containers for collection of waste liquid or extracted matter is installed on a bottom face of the solid-phase extraction column, and the extracted matter is separately collected without being mixed with waste liquid by switching the positions of the collection device.
Abstract:
When using an immunological analysis method wherein antigen-antibody reactions are used to form complexes of microparticles and a substance being measured, purifying, then measuring by spectroscopy, and a mass spectrometry method wherein antigen-antibody reactions are used to form complexes of microparticles and a substance being measured, purifying, then measuring with a mass spectrometer, the amount of the complex flowing in the flow path for immunological analysis and the amount of the complex flowing in the flow path for mass spectrometry are unknown, so the substance being measured cannot be accurately quantified even when merging information obtained from immunological analysis and information obtained from mass spectrometry. The invention provides a mechanism for quantifying the complexes after formation of the complexes, on the flow path for mass spectrometry and the flow path for immunological analysis.
Abstract:
An analysis device is provided with a first disk on which a sample container and disposable container can be disposed, a second disk on which a solid-phase extraction cartridge and disposable container can be disposed, a first probe capable of transferring a sample of the sample container disposed on the first disk or a solution of the disposable container disposed on the first disk to the solid-phase extraction cartridge or disposable container disposed on the second disk, and a second probe capable of transferring a reagent of a reagent container to the sample container or disposable container disposed on the first disk and the solid-phase extraction cartridge or disposable container disposed on the second disk. Sample preprocessing before solid-phase extraction processing takes place on the first disk.