Abstract:
A polymeric molecule having the formula: X—[C(A)2C(B)(B′)]n-Q[CY═C(Z)(Z′)] or [C(A)2=C(B)]n-Q[C(Y)(Y′)—C(Z)(Z′)]—X′, wherein A is either H or F; B and B′ are either H, F, or Cl, and are not necessarily the same; X and X′ are Br, Cl or I (and are not necessarily the same); Y and Y′ are F, Br, Cl or I (and are not necessarily the same); and wherein Z and Z′ are F, Br, Cl or I (and are not necessarily the same); Q is optional and is either oxygen (O) or sulfur (S); and n is at least 1.
Abstract:
Methods for the synthesis of CTFE-based block copolymers through iodine transfer polymerization are disclosed. In an exemplary embodiment, a method includes reacting a fluoromonomer “M” with a chain transfer agent of the formula X—Y or Y—X—Y, wherein X represents a C1-C3 hydrocarbon, a C1-C6 hydrofluorocarbon, C1-C6 hydrochlorofluorocarbon, or C1-C6 fluorocarbon and Y represents iodine or bromine, in the presence of a radical initiator, to form a macro-initiator of the formula: X-poly(M)-Y or Y-poly(M)-X-poly(M)-Y, wherein poly(M) represents a polymer of the fluoromonomer. The method further includes reacting the macro-initiator with chlorotrifluoroethylene (CTFE) in the presence of a radical initiator to form a diblock or a triblock CTFE-based block copolymer of the formula: X-poly(M)-block-poly(CTFE) or PCTFE-block-poly(M)-X-poly(M)-block-PCTFE.
Abstract:
Disclosed is a copolymer film that includes a first comonomer including a chlorofluoro olefin and a second comonomer that is selected from the group consisting of itaconic acid, 2,3-dihydropyran, D-glucal, glycerine carbonate vinyl ether, 2-hydroxypropyl acrylate, maleic anhydride, vinylidene chloride, and mixtures thereof.
Abstract:
A polymeric molecule having the formula: X—[C(A)2C(B)(B′)]n-Q[CY═C(Z)(Z′)] or [C(A)2=C(B)]n-Q[C(Y)(Y′)—C(Z)(Z′)]—X′, wherein A is either H or F; B and B′ are either H, F, or Cl, and are not necessarily the same; X and X′ are Br, Cl or I (and are not necessarily the same); Y and Y′ are F, Br, Cl or I (and are not necessarily the same); and wherein Z and Z′ are F, Br, Cl or I (and are not necessarily the same); Q is optional and is either oxygen (O) or sulfur (S); and n is at least 1.
Abstract:
Methods for the synthesis of CTFE-based block copolymers through iodine transfer polymerization are disclosed. In an exemplary embodiment, a method includes reacting a fluoromonomer “M” with a chain transfer agent of the formula X—Y or Y—X—Y, wherein X represents a C1-C3 hydrocarbon, a C1-C6 hydrofluorocarbon, C1-C6 hydrochlorofluorocarbon, or C1-C6 fluorocarbon and Y represents iodine or bromine, in the presence of a radical initiator, to form a macro-initiator of the formula: X-poly(M)-Y or Y-poly(M)-X-poly(M)-Y, wherein poly(M) represents a polymer of the fluoromonomer. The method further includes reacting the macro-initiator with chlorotrifluoroethylene (CTFE) in the presence of a radical initiator to form a diblock or a triblock CTFE-based block copolymer of the formula: X-poly(M)-block-poly(CTFE) or PCTFE-block-poly(M)-X-poly(M)-block-PCTFE.
Abstract:
Disclosed is a copolymer film that includes a first comonomer including a chlorofluoro olefin and a second comonomer that is selected from the group consisting of itaconic acid, 2,3-dihydropyran, D-glucal, glycerine carbonate vinyl ether, 2-hydroxypropyl acrylate, maleic anhydride, vinylidene chloride, and mixtures thereof.
Abstract:
Fluorinated macromonomers, a PCTFE-g-poly(M) graft copolymer, and moisture barrier films and articles formed therefrom are provided. The PCTFE-g-poly(M) graft copolymers have a PCTFE backbone component and a plurality of pendant groups attached to the PCTFE backbone component.
Abstract:
Fluorinated macromonomers, a PCTFE-g-poly(M) graft copolymer, and moisture barrier films and articles formed therefrom are provided. The PCTFE-g-poly(M) graft copolymers have a PCTFE backbone component and a plurality of pendant groups attached to the PCTFE backbone component.
Abstract:
Flexible packages, transdermal drug delivery devices, and methods for fabricating packages are provided. An exemplary flexible package includes a chemical and moisture resistant layer formed from poly(chlorotrifluoroethylene-co-vinylidene fluoride) (“P(CTFE-co-VDF)”) copolymer. Further, the exemplary flexible package includes a substance to be delivered. The substance is applied to or enclosed by the chemical and moisture resistant layer.
Abstract:
Methods for synthesizing stabilized polymers of chlorotrifluoroethylene and products manufactured using such polymers are disclosed herein. In one exemplary embodiment, a method for synthesizing chlorotrifluoroethylene (CTFE)-based polymers includes reacting, in the presence of an initiator and in a reaction medium at a pH of about 1.5 to about 2.5, one or more monomers comprising CTFE and after an amount of polymerization reaction time has passed, adding a neutralizing agent to the reaction medium to increase the pH of the reaction medium to within a range of about 1.8 to about 6.0.