Process integration scheme of SONOS technology
    7.
    发明申请
    Process integration scheme of SONOS technology 有权
    SONOS技术的过程集成方案

    公开(公告)号:US20080014707A1

    公开(公告)日:2008-01-17

    申请号:US11485949

    申请日:2006-07-12

    IPC分类号: H01L21/76

    CPC分类号: H01L27/115 H01L27/11568

    摘要: In an non-limiting example, we provide a substrate having a cell region, and non-cell regions. We form a tunneling dielectric layer, a charge storing layer, a top insulating layer (e.g., ONO), over the substrate. Then we form a conductive pad layer over the top insulating layer. We form isolation trenches in the pad layer, the charge storing layer and the tunneling dielectric layer and into the substrate. We form isolation regions in the isolation trenches. We remove the pad layer, charge storing layer and the tunneling dielectric layer in the non-cell regions. We form a gate layer over the pad layer and the substrate surface. We complete to form the memory (e.g., SONOS) device in the cell region and other devices in the non-cell regions of the substrate.

    摘要翻译: 在非限制性实例中,我们提供具有细胞区域和非细胞区域的底物。 我们在衬底上形成隧道介电层,电荷存储层,顶部绝缘层(例如ONO)。 然后我们在顶部绝缘层上形成导电焊盘层。 我们在焊盘层,电荷存储层和隧道电介质层中形成隔离沟槽并进入衬底。 我们在隔离沟中形成隔离区。 我们去除非单元区域中的焊盘层,电荷存储层和隧道介电层。 我们在衬垫层和衬底表面上形成栅极层。 我们完成以形成单元区域中的存储器(例如SONOS)器件和衬底的非单元区域中的其他器件。

    Method to fabricate Ge and Si devices together for performance enhancement
    8.
    发明授权
    Method to fabricate Ge and Si devices together for performance enhancement 有权
    将Ge和Si器件制造在一起以提高性能的方法

    公开(公告)号:US07202140B1

    公开(公告)日:2007-04-10

    申请号:US11297540

    申请日:2005-12-07

    IPC分类号: H01L21/30

    摘要: A method for forming a semiconductor structure having devices formed on both sides. A first substrate and a second substrate are provided. The first substrate is preferably comprised of Ge. The second substrate is preferably comprised of silicon. We form a first dielectric layer over the first substrate. We form a first insulating layer over the second substrate. We bond the first dielectric layer and the first dielectric layer to form a first structure. The first structure comprised of the first substrate, an insulation layer (combined first dielectric and first insulating layers) and the second substrate. We reduce the thickness of the first substrate. We form via plugs through the first substrate and the insulation layer and at least partially through the second substrate. We form first active devices on the surface of the first substrate. We form a first capping layer over the first active devices and the first substrate. We reduce the thickness of the second substrate to expose the via plugs. We form second active devices on the second substrate.

    摘要翻译: 一种用于形成具有形成在两侧的器件的半导体结构的方法。 提供第一基板和第二基板。 第一衬底优选由Ge组成。 第二衬底优选由硅组成。 我们在第一衬底上形成第一电介质层。 我们在第二衬底上形成第一绝缘层。 我们键合第一介电层和第一介电层以形成第一结构。 第一结构包括第一基底,绝缘层(组合的第一介电层和第一绝缘层)和第二基底。 我们减少第一个基板的厚度。 我们通过插塞穿过第一基底和绝缘层形成,并且至少部分地穿过第二基底。 我们在第一衬底的表面上形成第一有源器件。 我们在第一有源器件和第一衬底上形成第一覆盖层。 我们减小第二基板的厚度以露出通孔塞。 我们在第二个基板上形成第二个有源器件。

    Method of forming a relaxed semiconductor buffer layer on a substrate with a large lattice mismatch
    9.
    发明授权
    Method of forming a relaxed semiconductor buffer layer on a substrate with a large lattice mismatch 有权
    在具有大晶格失配的衬底上形成松散半导体缓冲层的方法

    公开(公告)号:US06995078B2

    公开(公告)日:2006-02-07

    申请号:US10763305

    申请日:2004-01-23

    IPC分类号: H01L21/20 H01L21/36

    摘要: A method of forming a relaxed silicon—germanium layer for use as an underlying layer for a subsequent overlying tensile strain silicon layer, has been developed. The method features initial growth of a underlying first silicon—germanium layer on a semiconductor substrate, compositionally graded to feature the largest germanium content at the interface of the first silicon—germanium layer and the semiconductor substrate, with the level of germanium decreasing as the growth of the graded first silicon—germanium layer progresses. This growth sequence allows the largest lattice mismatch and greatest level of threading dislocations to be present at the bottom of the graded silicon—germanium layer, with the magnitude of lattice mismatch and threading dislocations decreasing as the growth of the graded silicon—germanium layer progresses. In situ growth of an overlying silicon—germanium layer featuring uniform or non—graded germanium content, results in a relaxed silicon—germanium layer with a minimum of dislocations propagating from the underlying graded silicon—germanium layer. In situ growth of a silicon layer results in a tensile strain, low defect density layer to be used for MOSFET device applications.

    摘要翻译: 已经开发了形成用于随后的上覆拉伸应变硅层的下层的松弛硅 - 锗层的方法。 该方法的特征在于半导体衬底上的底层第一硅 - 锗层的初始生长,其组成分级以在第一硅 - 锗层和半导体衬底的界面处具有最大的锗含量,锗的含量随着生长 的分级第一硅锗层进行。 该生长序列允许最大的晶格失配和最高级别的穿透位错存在于渐变硅 - 锗层的底部,随着梯度硅 - 锗层的生长进行,晶格失配和穿透位错的大小减小。 具有均匀或非分级锗含量的上覆硅锗层的原位生长导致松弛的硅 - 锗层,其中最小的位错从下面的梯度硅 - 锗层传播。 硅层的原位生长导致用于MOSFET器件应用的拉伸应变,低缺陷密度层。

    Method for fabricating thin film at high temperature
    10.
    发明授权
    Method for fabricating thin film at high temperature 有权
    在高温下制造薄膜的方法

    公开(公告)号:US06251780B1

    公开(公告)日:2001-06-26

    申请号:US09524394

    申请日:2000-03-13

    IPC分类号: H01L2144

    摘要: A method for fabricating a semiconductor device includes the steps of forming a refractory metal film on a semiconductor substrate, forming a capping film on the refractory metal film, injecting IV group atoms into the capping film to knock atoms of the capping film into the refractory metal film, and forming a metal silicide film at an interface between the semiconductor substrate and the refractory metal film.

    摘要翻译: 一种制造半导体器件的方法包括以下步骤:在半导体衬底上形成难熔金属膜,在难熔金属膜上形成封盖膜,将IV族原子注入封盖膜中,将封盖膜的原子敲入难熔金属 并且在半导体衬底和难熔金属膜之间的界面处形成金属硅化物膜。