Abstract:
Methods, systems, and computer-readable media are provided for offloading services and functionalities from a main host central processing unit (CPU) of a computing device to a dedicated power-efficient offload engine, thereby enabling a longer battery life for the device and an enhanced set of features.
Abstract:
A method of performing a transaction between a plurality of devices, the method comprises establishing a communication session between an end device and a first near field communication (NFC)-enabled device. The method further includes receiving instructions from the end device instructing the first NFC-enabled device to move in NFC range of a second NFC device; establishing a NFC session between the first NFC-enabled device and second NFC-enabled device; and sending the transaction data received from the end device to the second NFC device over the NFC session.
Abstract:
Some demonstrative embodiments include devices, systems and/or methods of estimating a location of a mobile device. For example, a location estimation entity (LE) may be configured to receive from a server location-based location-enabling source (LES) information identifying one or more location-enabling sources based on a location area of a mobile device, and to communicate with the one or more identified location-enabling sources information for estimating the location of the mobile device.
Abstract:
Methods, apparatuses, and computer readable media for multi-band discovery, where a station (STA) comprises processing circuitry configured to: decode, from an access point (AP) multi-link device (MLD) on a first channel of a first band, a first PPDU, the first PPDU comprising an indication of an operating channel of the AP MLD on a second channel of a second band, encode, for transmission to the AP MLD on the second channel of the second band, a second PPDU. And where an AP MLD comprises processing circuitry configured to: encode, for transmission on a first link of the MLD, a first physical layer protocol data unit (PPDU), the first PPDU comprising an indication of an operating band and an operating channel of a second link of the MLD, and decode, from a station (STA) on the second link on the operating band and the operating channel, a second PPDU.
Abstract:
To communicate with a plurality of non-AP stations (STAs) within synchronized transmission opportunities (S-TXOPs), an access point station (AP) performs an initial management frame exchange with the STAs. During the initial management frame exchange, one or more sets of semi-static allocation parameters are signalling to the STAs. Each set of semi-static allocation parameters is associated with an allocation index (IDx). The AP may communicate data with the STAs during S-TXOPs that follow the initial management frame exchange. Each of the S-TXOPs may include an S-TXOP trigger. The S-TXOP trigger may be encoded to include one of the allocation indices to indicate a known allocation for use during the associated S-TXOP when a set of the predetermined semi-static allocation parameters are to be used. The S-TXOP trigger may be encoded to include full allocation information to indicate a new allocation for use during the associated S-TXOP when the predetermined semi-static allocation parameters are not used.
Abstract:
Embodiments relating to systems, methods, and devices for social proximity fine timing measurement requests (FTMR) multicast signaling between mobile devices are disclosed. Example embodiments generally relate to Wi-Fi networks, IEEE 802.11x, Social Wi-Fi networks and Neighbor-Awareness Networking (NAN).
Abstract:
Embodiments may comprise logic to adaptively prepare and transmit environmental information based upon an estimated current location and, in some embodiments, context of a device and to adaptively cache the environmental information to reduce or optimize environmental information communicated from an information server to the device. Some embodiments comprise an information server to receive a request for environmental information comprising an estimated current location for the device. In many embodiments, the information server may determine a prior set of environmental information conveyed to the device and determine, in response to receiving the estimated current location, the current set of environmental information based upon the estimated current location. In many embodiments, the current set of environmental information may encompass environmental information near the estimated current location of the device but not to encompass environmental information that was included in a prior set of environmental information transmitted to the device.
Abstract:
An apparatus for and method of reducing the soft output information packet to be computed by a soft symbol generator. The reduced soft output information packet generated by the soft symbol generator is subsequently used by a soft symbol to soft bit mapper which functions to convert soft symbol decision information into soft bit decision information. A symbol competitor table is constructed that includes the most likely symbol competitors for each bit of the symbol. The table is populated with m entries for each possible symbol value, where m represents the number of bits per symbol. Symbol competitors am retrieved from the table in accordance with hard decisions. Soft symbol information is generated only for symbol competitors rather than for all possible symbols thus substantially reducing the size of the information packet.
Abstract:
This disclosure describes systems, methods, and devices related to enhanced bandwidth selection for wireless devices. A device may generate a request frame with at least one of a first indication of a bandwidth for which a second device is to measure a first noise level or a second indication of a resource unit for which the second device is to measure a second noise level. The device may send the request frame to the second device. The device may identify a response frame received from the second device, the response frame having a third indication of the first noise level or the second noise level and a fourth indication of the bandwidth or the resource unit. The device may determine, based on the first noise level or the second noise level, a parameter associated with a subsequent frame to send to the second device.
Abstract:
The present application discloses devices, systems and methods for establishing and utilizing a UV sensing network to harness the efficacy of distributed UV sensing to produce improved accuracy of UV exposure measurement using mobile devices. This may be accomplished by “crowd sourcing”, i.e. having multiple devices work collaboratively to measure the UV exposure. The collaboration can be implemented in many potential ways, such as, using a server based architecture where devices connect to a specific “UV measurements server” to provide measurements and receive aggregate estimated exposure levels, and/or by using a peer-to-peer architecture, where devices in a specific region creates a local ad-hoc UV sensing network.