METHOD FOR SMOOTHING SURFACE ROUGHNESS OF COMPONENTS

    公开(公告)号:US20180371623A1

    公开(公告)日:2018-12-27

    申请号:US15631803

    申请日:2017-06-23

    摘要: A method for reducing surface roughness of a component according to an example of the present disclosure includes forming a layer of reactive material on a surface of a component, the surface of the component having at least one partially attached particle, whereby the reactive material substantially covers the at least one partially attached particle, and dissolving the reactive material, wherein dissolving the reactive material covering the partially attached particles causes the partially attached particles to break free from the surface of the component, leaving a new smooth surface.Another method for reducing surface roughness of an engine component according to an example of the present disclosure includes forming a component by additive manufacturing, the component including an internal feature having at least one rough area, the rough area including at least one partially attached particle, forming an aluminum layer on the surface of the component, the aluminum layer substantially covering the at least one partially attached particle, heat treating the component to cause diffusion of aluminum in a diffusion zone, and dissolving away the aluminum layer and diffusion zone, wherein dissolving the aluminum covering the at least one partially attached particle and the diffusion zone causes the at least one partially attached particle to be freed from the surface of the component.

    Controlled trivalent chromium pretreatment

    公开(公告)号:US09695523B2

    公开(公告)日:2017-07-04

    申请号:US14052719

    申请日:2013-10-12

    摘要: A method for forming a trivalent chromium coating on an aluminum alloy substrate includes adding a chromium-containing solution to a vessel, immersing the aluminum alloy substrate in the chromium-containing solution, immersing a counter electrode in the chromium-containing solution, and applying an electrical potential bias to the aluminum alloy substrate with respect to its equilibrium potential to form a trivalent chromium coating on an outer surface of the aluminum alloy substrate. A method for forming a trivalent chromium coating on a metal substrate includes adding a chromium-containing solution to a vessel, immersing the metal substrate in the chromium-containing solution, immersing a counter electrode in the chromium-containing solution, and modulating an electrical potential difference between the metal substrate and the counter electrode to form a trivalent chromium coating on an outer surface of the metal substrate.