摘要:
An energy storage device can include at least one electrode that comprise a plurality carbon nanostructure (CNS)-infused fibers in contact with an active material and an electrolyte.
摘要:
Electrical devices having a plurality of stacked electrode layers are described. At least one of the electrode layers contains continuous fibers that are infused with carbon nanotubes. The continuous fibers can be disposed upon an electrically conductive base plate. The electrical devices can further contain an electrolyte contacting each electrode layer and a layer of separator material disposed between each electrode layer, in which case the electrical devices can form a supercapacitor. Such supercapacitors can have a capacitance of at least about 1 Farad/gram of continuous fibers. The capacitance can be increased by coating at least a portion of the infused carbon nanotubes with a material such as, for example, a conducting polymer, a main group metal compound, and/or a transition metal compound. Methods for producing the electrical devices are also described.
摘要:
Electrical devices containing continuous fibers that are infused with carbon nanotubes are described herein. The electrical devices contain at least a first electrode layer and a second electrode layer, where the first and second electrode layers each contain a plurality of continuous fibers that are infused with carbon nanotubes. In some embodiments, the electrical devices can be supercapacitors, further containing at least a base plate, a layer of separator material disposed between the first and second electrode layers, and an electrolyte in contact with the first and second electrode layers. The first and second electrode layers can be formed by conformal winding of the continuous fibers. The electrical devices can contain any number of additional electrode layers, each being separated from one another by a layer of separator material. Methods for producing the electrical devices are also described herein.
摘要:
Electrical devices having electrodes containing carbon nanotubes infused to a substrate are described herein. The electrical devices contain at least a first electrode material containing a first plurality of carbon nanotubes infused to a first substrate and a second electrode material containing a second plurality of carbon nanotubes infused to a second substrate. The first electrode material and the second electrode material are wound in a spiral configuration about a central axis. The electrical devices can be supercapacitors, which also contain at least an electrolyte in contact with the first electrode material and the second electrode material, and a first separator material disposed between the first electrode material and the second electrode material. Methods and apparatuses for making the electrical devices are also disclosed herein.
摘要:
A device, which can primarily be described as an arc shaped item designed to contact the back of a person's neck in certain locations while the user lays in a horizontal position, so as to relieve compression by passively creating tension along the user's cervical system, thereby helping to alleviate or prevent neck pain and headaches which are caused by cervical (neck) muscle tightness and joint irritation, and its methods of use.
摘要:
Described herein are multi-functional composite materials containing energy storage assemblies that can be significantly resistant to tension/compression stress. The energy storage assemblies can contain at least one energy storage layer that contains an insulating layer having a plurality of openings arranged in a spaced apart manner, and a plurality of energy storage devices, each energy storage device being contained within one of the openings. The energy storage devices can be electrically connected to one another. The energy storage layer can contain a support material upon which electrical connections are formed. One or more energy storage layers can be disposed between two or more stress carrying layers to form an energy storage assembly that can have significant resistance to tension/compression stress. Energy storage devices suitable for use in the energy storage assemblies can include, for example, batteries, capacitors and/or supercapacitors. Methods for producing the energy storage assemblies are also described.