摘要:
A multi-layered microcapsule has an inner extracellular matrix and an outer shell. The inner extracellular matrix includes a first inner layer of biopolymer and a second intermediate layer of polymer that provides partial immune-protection and holds the first layer in place. The outer shell can form an exoskeleton to provide mechanical stability. Each of the individual layers can be varied to optimize mechanical stability, cell function, and immuno-protection.
摘要:
A non-disruptive three-dimensional culture system allows cell growth and proliferation in three dimensions, permitting cell splitting without subjecting cells to disruptive conditions that affect cell structure and functions. An extracellular matrix provides a good environment for culturing or co-culturing anchorage-dependent cells. The cells cultured this manner can be readily used in such applications as cell transplantation, tissue engineering seeding of cells on scaffolds, and other applications that require immediate availability of functioning cells.
摘要:
A multi-layered microcapsule has an inner extracellular matrix and an outer shell. The inner extracellular matrix includes a first inner layer of biopolymer and a second intermediate layer of polymer that provides partial immune-protection and holds the first layer in place. The outer shell can form an exoskeleton to provide mechanical stability. Each of the individual layers can be varied to optimize mechanical stability, cell function, and immuno-protection.
摘要:
Methods of making cell sheets, tissue sheets and tissue-engineered blood vessels are provided. The methods include culturing cells on a nanoimprinted coated scaffold under hypoxic conditions to form an aligned cell sheet and then removing the aligned cell sheet from the scaffold. The cell sheets, tissue sheets and tissue-engineered blood vessels made the methods are also disclosed. The cell sheets, tissue sheets and tissue-engineered blood vessels may be implanted in subjects to treat a variety of conditions.
摘要:
The instant invention provides electrospun fiber compositions comprising one or more polymers and one or more biologically active agents. In specific embodiments, the biologically active agents are nerve growth factors. In certain embodiments, the electrospun fiber compositions comprising one or more biologically active agents are on the surface of a film, or a tube. The tubes comprising the electrospun fiber compositions of the invention can be used, for example, as nerve guide conduits.
摘要:
This invention is predicated on the present applicants' discovery that nanostructures comprising discrete regions of different composition can be used to deliver to a biological cell a desired combination of molecules in close proximity. Different molecules can be selectively bonded to discrete regions of different composition in sufficiently close physical relationship to enhance delivery or effectiveness within the cell. The preferred nanostructures are multicomponent nanorods. Important applications include delivery of missing DNA sequences for gene therapy and delivery of antigens or DNA encoding antigens for vaccination.
摘要:
A medical device and method for transportation and release of a therapeutic agent into a mammalian body are disclosed. The medical device is coated with alternating layers of a negatively charged therapeutic agent and a cationic polyelectrolyte, following a controlled adsorption technique. The method is simple, with minimal perturbation to the therapeutic agent and uses clinically acceptable biopolymers such as human serum albumin. The amount of the therapeutic agent that can be delivered by this technique is optimized by the number of the layers of the therapeutic agent adsorbed on the surface of medical device. There is a washing step between alternate layers of the therapeutic agent and cationic polyelectrolyte carrier, so that the amount of the therapeutic agent on the insertable medical device represents the portion that is stably entrapped and adsorbed on to the medical device. The insertable medical device and method according to this invention are capable of reproducibly delivering therapeutic agent to a site in a mammalian body, and allow for a highly reproducible and controllable release kinetics of the therapeutic agent.
摘要:
The present invention features methods of administering a therapeutic agent to a patient's lymph nodes by instillation of microparticles or nanoparticles comprising a biocompatible polymer and the therapeutic agent into the patient's bladder. The invention also features methods of modulating a patient's immune response and methods of systemic delivery of a therapeutic agent systemically using the administration methods of the invention.
摘要:
4-Phenylbutyrate exerts many beneficial biological effects. It appears to induce the transcription of certain promoters, as well as having a remedial effect on proteins which are aberrantly localized within the cell. In addition, it appears to cause cells to developmentally differentiate. The present invention provides nanosphere formulations of 4-phenylbutyrate and other drugs which remediate defective protein localization intracellularly. These formulations permit lower concentrations of drugs to be administered, providing both cost and safety benefits.
摘要:
Biodegradable polymers are described comprising the recurring monomeric units shown in formula I or II: wherein X is --O-- or --NR'--, where R' is H or alkyl; L is a branched or straight chain aliphatic group having from 1-20 carbon atoms; M.sub.1 and M.sub.2 are each independently (1) a branched or straight chain aliphatic group having from 1-20 carbon atoms; or (2) a branched or straight chain, oxy-, carboxy- or amino-aliphatic group having from 1-20 carbon atoms; Y is --O--, --S-- or --NR'--, where R' is H or alkyl; R is H, alkyl, alkoxy, aryl, aryloxy, heterocyclic or heterocycloxy; the molar ratio of x:y is about 1; the molar ratio n:(x or y) is between about 200:1 and 1:200; and the molar ratio q:r is between about 1:99 and 99:1; wherein said biodegradable polymer is biocompatible before and upon biodegradat.Processes for preparing the polymers, compositions containing the polymers and biologically active substances, articles useful for implantation or injection into the body fabricated from the compositions, and methods for controllably releasing biologically active substances using the polymers, are also described.