摘要:
Provided is a flow battery system and a control method and device thereof. The control method of the flow battery system includes: monitoring the temperature of the flow battery system; judging whether the temperature of the flow battery system exceeds a predefined temperature value range or not; and if the temperature of the flow battery system exceeds the predefined temperature value range, adjusting the temperature of the flow battery system to make same fall into the predefined temperature value range. The present disclosure enables the flow battery system to operate within the predefined temperature value range, thus enhancing the charging and discharging efficiency of the flow battery system.
摘要:
A copolyester and preparation method and use thereof are disclosed. In the diacid components constituting the copolyester, the content of the structure unit of terephthalic acid is 90 mol % or more. In the dihydric alcohol components constituting the copolyester, the content of the structure unit of ethylene glycol is 70-99 mol % and the content of the structure unit of aliphatic dihydric alcohol having 6 or less carbon atoms and having a side chain is 1-30 mol %. The copolyester further comprises a structure unit of polyethylene glycol. The copolyester can be made into fiber by common method, and further made into fabric, and the obtained finished-product has good dyeability to disperse dyes under normal temperature and normal pressure.
摘要:
Embodiments of the present invention provide a method and system for reducing congestion on a communication network. The communication network includes a network node having a first port and a second port. The network node is associated with forwarding data including first port forwarding data identifying at least one node accessible via the first port, and second port forwarding data identifying at least one node accessible via the second port. A failure associated with one of the first port and the second port is determined. The forwarding data corresponding to the other of the first port and the second port not associated with the failure, is updated with the one of the first port forwarding data and second port forwarding data corresponding to the one of the first port and the second port associated with the failure.
摘要:
A process for preparing various morphology NTE compound ZrW0.5Mo1.5O8 comprising: preparing 0.4M Zr4+ solution, 0.2M W6+ solution and 0.6M Mo6+ solution with zirconyl nitrate, ammonium tungstate and ammo-nium molybdate separately, mixing them with the same volume and stirring until they are mixed well, adding 6-12M hydrochloric acid with the volume of ⅕- 1/7 of the mixed solution, or adding 6-12M hydrochloric acid with the volume of ⅓-⅕ of the mixed solution and 0.2-0.4 wt % ammonium monoacid phosphate of all raw materials, or adding 9-18M sulfuric acid with the volume of 1/10-⅕ of the mixed solution, well mixing, transferring the mixed solution into the hydrothermal reactor, reacting at 150-180° C. for 8-25 hours, washing, drying and getting the precursor, heating the precursor at 480-500° C. for more than 5 hours and obtaining the product is provided.
摘要:
This invention relates to the cleaning of flue gas released from various combustion processes, particularly a surface deposition NH3—SCR honeycomb catalyst and its preparation method. The catalyst is composed of framework material, TiO2, V2O5 and WO3, wherein the framework material is composed of clay, coal ash, mineral waste residue or their mixture. The mass fractions for framework material, TiO2, V2O5, and WO3 are 60 wt. % to 80 wt. %, 13 wt. % to 33 wt. %, 1 wt. % to 5 wt. %, and 0.1 wt. % to 2 wt. %, respectively. The nano V2O5—WO3—TiO2 particles were deposited on the surface of particle pore or honeycomb, and the performance of the catalyst could be greatly improved.
摘要:
A process for preparing various morphology NTE compound ZrW0.5Mo1.5O8 comprising: preparing 0.4M Zr4+ solution, 0.2M W6+ solution and 0.6M Mo6+ solution with zirconyl nitrate, ammonium tungstate and ammo-nium molybdate separately, mixing them with the same volume and stirring until they are mixed well, adding 6-12M hydrochloric acid with the volume of 1/5-1/7 of the mixed solution, or adding 6-12M hydrochloric acid with the volume of 1/3-1/5 of the mixed solution and 0.2-0.4 wt % ammonium monoacid phosphate of all raw materials, or adding 9-18M sulfuric acid with the volume of 1/10-1/5 of the mixed solution, well mixing, transferring the mixed solution into the hydrothermal reactor, reacting at 150-180° C. for 8-25 hours, washing, drying and getting the precursor, heating the precursor at 480-500° C. for more than 5 hours and obtaining the product is provided.
摘要:
This invention relates to the cleaning of flue gas released from various combustion processes, particularly a surface deposition NH3—SCR honeycomb catalyst and its preparation method. The catalyst is composed of framework material, TiO2, V2O5 and WO3, wherein the framework material is composed of clay, coal ash, mineral waste residue or their mixture. The mass fractions for framework material, TiO2, V2O5, and WO3 are 60 wt. % to 80 wt. %, 13 wt. % to 33 wt. %, 1 wt. % to 5 wt. %, and 0.1 wt. % to 2 wt. %, respectively. The nano V2O5—WO3—TiO2 particles were deposited on the surface of particle pore or honeycomb, and the performance of the catalyst could be greatly improved
摘要:
FIG. 1 is a first perspective view of a ceiling fan with light showing my new design; FIG. 2 is a second perspective view thereof; FIG. 3 is a front view thereof; FIG. 4 is a back view thereof; FIG. 5 is a left side view thereof; FIG. 6 is a right side view thereof; FIG. 7 is a top view thereof; FIG. 8 is a bottom view thereof; and, FIG. 9 is an enlarged view of the selected portion 9 in FIG. 1. The broken lines shown in the drawings depict portions of the ceiling fan with light that form no part of the claimed design.
摘要:
The ethyl alcohol-detecting device of the present invention includes an ethyl alcohol-detecting portion that calculates an ethyl alcohol content corresponding to an ethyl alcohol concentration, based on a first subject image stored in a memory and a reference image stored in a nonvolatile memory; an interfering substance-detecting portion that calculates a degree of interference corresponding to the concentration of an interfering substance, based on a second subject image stored in the memory and the reference image stored in the nonvolatile memory; and a determination portion that determines that ethyl alcohol has been detected when the ethyl alcohol content is equal to or higher than a first predetermined threshold and the degree of interference is less than a second predetermined threshold, and determines that ethyl alcohol has not been detected when the ethyl alcohol content is equal to or higher than the first predetermined threshold and the degree of interference is equal to or higher than the second predetermined threshold.