摘要:
The invention relates to a power generation system with a continuously operating fuel reformer. Preferably, the fuel reformer is either off, warming up, or operating with an essentially constant fueling rate. Some of the reformed fuel is intermittently used to regenerate a NOx trap that treats the exhaust of an internal combustion engine. Any reformed fuel not used for other purposes is supplied to a fuel cell. The fuel reformer does not shut down between NOx trap regeneration cycles except when the engine is also shut down. The invention substantially eliminates issues of reformer response time as they relate to NOx trap regeneration.
摘要:
The invention relates to a power generation system with a continuously operating fuel reformer. Preferably, the fuel reformer is either off, warming up, or operating with an essentially constant fueling rate. Some of the reformed fuel is intermittently used to regenerate a NOx trap that treats the exhaust of an internal combustion engine. Any reformed fuel not used for other purposes is supplied to a fuel cell. The fuel reformer does not shut down between NOx trap regeneration cycles except when the engine is also shut down. The invention substantially eliminates issues of reformer response time as they relate to NOx trap regeneration.
摘要:
An exhaust aftertreatment system comprising two or more branches, at least one of which contains a NOx adsorber-catalyst. The branches unite downstream into a trailing conduit that contains an ammonia-SCR catalyst. Ammonia generated by the NOx adsorber-catalyst during regeneration is stored for later use by the SCR catalyst. One advantage of this configuration is a continuous or near continuous presence of oxygen within the trailing exhaust conduit. The continuous presence of improves the efficiency of the SCR catalyst. Another concept is to configure a multi-branch exhaust aftertreatment system without valves, dampers, or other electronically controlled devices adapted to selectively alter the distribution of the exhaust between the branches. The absence of such devices generally results in a comparatively balanced division of exhaust between the branches. One benefit of this configuration is improved reliability as compared to systems that use valves.
摘要:
In an exhaust aftertreatment system comprising a NOx adsorber-catalyst followed by an SCR catalyst, means are provided for preventing the SCR catalyst from becoming heated to near the same peak temperatures as the NOx adsorber-catalyst during desulfation. In one embodiment, the means is a thermal mass between the NOx adsorber-catalyst and the SCR catalyst. In another embodiment, the means is a valve configured to selectively divert exhaust leaving the NOx adsorber-catalyst from the SCR catalyst. In a method of the invention, the NOx adsorber-catalyst temperature is cycled during desulfation. The peaks of the cycles are within an appropriate temperature range for desulfating the NOx adsorber-catalyst, but the average temperature is below the temperature range at which the SCR catalyst is damaged. The temperature peaks are damped as they travel from the NOx adsorber-catalyst to the SCR, whereby the SCR experiences much lower peak temperatures than the NOx adsorber-catalyst.
摘要:
The exhaust from a diesel-fueled internal combustion engine is treated by a lean NOX trap. The maximum temperature used for desulfating the lean NOX trap is kept relatively lower during early life and progressively increased as the trap ages. Designing for adequate late life performance entails excess capacity during early life. The method utilizes the excess capacity available during early life to slow aging of the trap and thereby extend the trap lifetime. The method facilitates meeting durability requirements for diesel-powered vehicles with exhaust aftertreatment.
摘要:
A diesel exhaust aftertreatment system comprises an LNT within an exhaust line. A low thermal mass DPF and a low thermal mass fuel reformer are configured within the exhaust line upstream from the LNT. A thermal mass is configured downstream from the fuel reformer and the DPF, but upstream from the LNT. For LNT denitration, the fuel reformer is rapidly heated and then used to catalyze steam reforming. The DPF is also rapidly heat each time the fuel reformer is heated and the LNT denitrated. The system operates to regenerate the DPF each time the LNT is denitrated. Preferably, a second DPF is provided to augment the performance of the first DPF. Preferably, the first DPF is small and of the flow through type whereas the second DPF is much larger and of the wall flow filter type. The second DPF can be used as the thermal mass.
摘要:
A diesel exhaust aftertreatment system comprises an LNT within an exhaust line. A low thermal mass DPF and a low thermal mass fuel reformer are configured within the exhaust line upstream from the LNT. A thermal mass is configured downstream from the fuel reformer and the DPF, but upstream from the LNT. For LNT denitration, the fuel reformer is rapidly heated and then used to catalyze steam reforming. The DPF is also rapidly heat each time the fuel reformer is heated and the LNT denitrated. The system operates to regenerate the DPF each time the LNT is denitrated. Preferably, a second DPF is provided to augment the performance of the first DPF. Preferably, the first DPF is small and of the flow through type whereas the second DPF is much larger and of the wall flow filter type. The second DPF can be used as the thermal mass.
摘要:
In an exhaust aftertreatment system comprising a NOx adsorber-catalyst followed by an SCR catalyst, means are provided for preventing the SCR catalyst from becoming heated to near the same peak temperatures as the NOx adsorber-catalyst during desulfation. In one embodiment, the means is a thermal mass between the NOx adsorber-catalyst and the SCR catalyst. In another embodiment, the means is a valve configured to selectively divert exhaust leaving the NOx adsorber-catalyst from the SCR catalyst. In a method of the invention, the NOx adsorber-catalyst temperature is cycled during desulfation. The peaks of the cycles are within an appropriate temperature range for desulfating the NOx adsorber-catalyst, but the average temperature is below the temperature range at which the SCR catalyst is damaged. The temperature peaks are damped as they travel from the NOx adsorber-catalyst to the SCR, whereby the SCR experiences much lower peak temperatures than the NOx adsorber-catalyst.
摘要:
In an exhaust aftertreatment system comprising a NOx adsorber-catalyst followed by an SCR catalyst, means are provided for preventing the SCR catalyst from becoming heated to near the same peak temperatures as the NOx adsorber-catalyst during desulfation. In one embodiment, the means is a thermal mass between the NOx adsorber-catalyst and the SCR catalyst. In another embodiment, the means is a valve configured to selectively divert exhaust leaving the NOx adsorber-catalyst from the SCR catalyst. In a method of the invention, the NOx adsorber-catalyst temperature is cycled during desulfation. The peaks of the cycles are within an appropriate temperature range for desulfating the NOx adsorber-catalyst, but the average temperature is below the temperature range at which the SCR catalyst is damaged. The temperature peaks are damped as they travel from the NOx adsorber-catalyst to the SCR, whereby the SCR experiences much lower peak temperatures than the NOx adsorber-catalyst.
摘要:
An exhaust aftertreatment system comprising two or more branches, at least one of which contains a NOx adsorber-catalyst. The branches unite downstream into a trailing conduit that contains an ammonia-SCR catalyst. Ammonia generated by the NOx adsorber-catalyst during regeneration is stored for later use by the SCR catalyst. One advantage of this configuration is a continuous or near continuous presence of oxygen within the trailing exhaust conduit. The continuous presence of improves the efficiency of the SCR catalyst. Another concept is to configure a multi-branch exhaust aftertreatment system without valves, dampers, or other electronically controlled devices adapted to selectively alter the distribution of the exhaust between the branches. The absence of such devices generally results in a comparatively balanced division of exhaust between the branches. One benefit of this configuration is improved reliability as compared to systems that use valves.