摘要:
A capacitor structure having a capacitor with a top electrode, a bottom electrode, and a capacitor dielectric layer between the top and bottom electrodes is disclosed. The capacitor includes upper and lower portions. The demarcation between the upper and lower portion is located between top and bottom surfaces of the capacitor dielectric layer. A dielectric layer is provided on the sidewalls of the upper portion of the capacitor to prevent shorting between the electrodes that can be caused by a conductive fence formed during processing.
摘要:
The present invention provides a sidewall oxygen diffusion barrier and a method for fabricating the sidewall oxygen diffusion barrier that reduces the diffusion of oxygen into contact plugs during a CW hole reactive ion etch of a ferroelectric capacitor of an FeRAM device. In one embodiment the sidewall barrier is formed from a substrate fence. In another embodiment, the sidewall barrier is formed by etching back an oxygen barrier.
摘要:
A ferroelectric device includes a bottom electrode on which are formed ferrocapacitor elements and, over the ferroelectric elements, top electrodes. The bottom electrodes are connected to lower layers of the device via conductive plugs, and the plugs and bottom electrodes are spaced apart by barrier elements of Ir and/or IrO2. The barrier elements are narrower than the bottom electrode elements, and are formed by a separate etching process. This means that Ir fences are not formed during the etching of the bottom electrode. Also, little Ir and/or IrO2 diffuses through the bottom electrode to the ferroelectric elements, and therefore there is little risk of damage to the ferroelectric material.
摘要:
A ferroelectric device includes a bottom electrode on which are formed ferrocapacitor elements and, over the ferroelectric elements, top electrodes. The bottom electrodes are connected to lower layers of the device via conductive plugs, and the plugs and bottom electrodes are spaced apart by barrier elements of Ir and/or IrO2. The barrier elements are narrower than the bottom electrode elements, and are formed by a separate etching process. This means that Ir fences are not formed during the etching of the bottom electrode. Also, little Ir and/or IrO2 diffuses through the bottom electrode to the ferroelectric elements, and therefore there is little risk of damage to the ferroelectric material.
摘要:
Ferrocapacitors having a vertical structure are formed by a process in which a ferroelectric layer is deposited over an insulator. In a first etching stage, the ferroelectric material is etched to form openings in it, leaving the insulating layer substantially intact. Then a conductive layer is deposited into the openings formed in the ferroelectric layer, forming electrodes on the sides of the openings. Further etching is performed to form gaps in the Al2O3 layer, for making connections to conductive elements beneath it. Thus, by the time the second etching step is performed; there are already electrodes overlying the sides of the ferroelectric material, without insulating fences in between.
摘要翻译:具有垂直结构的铁电体通过在绝缘体上沉积铁电层的工艺形成。 在第一蚀刻阶段中,铁电材料被蚀刻以在其中形成开口,从而使绝缘层基本上完好无损。 然后,将导电层沉积到形成在铁电层中的开口中,在开口的侧面形成电极。 进行进一步蚀刻以在Al 2 O 3层中形成间隙,用于连接到其下方的导电元件。 因此,在进行第二蚀刻步骤的时候, 已经有电极覆盖在铁电材料的两侧,其间没有绝缘栅栏。
摘要:
Forming a capacitor, by (a) forming a matrix of ferroelectric capacitor elements on a substrate, (b) forming a CAP layer over the ferroelectric capacitor elements, and (c) etching the CAP layer to a more uniform thickness. A capacitor that has a substrate layer, a matrix of ferroelectric capacitor elements including a first electrode layer substantially fixed relative to the substrate, a second electrode layer, and a ferroelectric layer sandwiched between the first and second electrode layers is disclosed. The capacitor has a shoulder layer extending from the substrate to the matrix, and a CAP layer etched to have substantially constant thickness covering sides of the matrix extending beyond the substrate.
摘要:
A ferroelectric capacitor device comprises a substrate, a contact plug passing through the substrate, a first electrode formed on the substrate, the first electrode being electrically connected to said plug, a ferroelectric layer formed on the first electrode, a second electrode formed on the ferroelectric layer, one or more first encapsulation layers on the second electrode, the encapsulation layers extending over the device, and one or more hydrogen storage material layers on the encapsulation layers. One or more second encapsulation layers may be formed on the one or more hydrogen storage material layers.
摘要:
A method of forming a ferroelectric capacitor, in particular for use in a FeRAM or high-k DRAM application, and a capacitor made by the method. The method comprises forming a first layer which is patterned, for example by a reactive ion etching method. A ferroelectric material is then formed over the patterned first layer. The morphology of the ferroelectric material will be dependent upon the patterning of the first layer. The ferroeletric layer is then patterned, for example using a wet etching or a reactive ion etching method. The etching will depend upon the morphology of the ferroelectric layer. After etching the ferroelectric layer, a conductive layer is provided over the ferroelectric layer to form a first electrode of the capacitor. If the first layer is a conductive layer, this forms the second electrode. If the first layer is a non-conductive layer, the conductive layer is patterned to form both the first and second electrodes.
摘要:
Ferrocapacitors having a vertical structure are formed by a process in which a ferroelectric layer is deposited over an insulator. In a first etching stage, the ferroelectric material is etched to form openings in it, leaving the insulating layer substantially intact. Then a conductive layer is deposited into the openings formed in the ferroelectric layer, forming electrodes on the sides of the openings. Further etching is performed to form gaps in the Al2O3 layer, for making connections to conductive elements beneath it. Thus, by the time the second etching step is performed; there are already electrodes overlying the sides of the ferroelectric material, without insulating fences in between.
摘要翻译:具有垂直结构的铁电体通过在绝缘体上沉积铁电体层的工艺形成。 在第一蚀刻阶段中,铁电材料被蚀刻以在其中形成开口,从而使绝缘层基本上完好无损。 然后,将导电层沉积到形成在铁电层中的开口中,在开口的侧面形成电极。 执行进一步蚀刻以在Al 2 O 3层中形成间隙,以便连接到其下方的导电元件。 因此,在进行第二蚀刻步骤的时候, 已经有电极覆盖在铁电材料的两侧,其间没有绝缘栅栏。
摘要:
A ferroelectric capacitor device comprises a substrate, a contact plug passing through the substrate, a first electrode formed on the substrate, the first electrode being electrically connected to said plug, a ferroelectric layer formed on the first electrode, a second electrode formed on the ferroelectric layer, one or more first encapsulation layers on the second electrode, the encapsulation layers extending over the device, and one or more hydrogen storage material layers on the encapsulation layers. One or more second encapsulation layers may be formed on the one or more hydrogen storage material layers.