摘要:
A liquid crystal display apparatus comprises a plurality of signal lines and scanning lines which are arranged so as to extend in directions orthogonal to each other and cross each other at cross portions, a plurality of pixel electrodes respectively provided at the cross portions so as to form a matrix arrangement, and a plurality of thin film transistors respectively provided between the pixel electrodes and the signal lines and respectively having gates connected with the scanning lines, for functioning as switches for writing image signals which are supplied from the signal lines into the pixel electrodes, picture change detecting means for detecting a change between still and moving pictures in a direction of time-axis included in a display image, and gate signal change means for changing the number of interlaced scanning lines in accordance with a change component detected in the picture change detecting means.
摘要:
The liquid crystal display device has at least a liquid crystal panel, a signal line driver for driving signal lines in the liquid crystal panel, and a scanning line driver for driving scanning lines. To prevent waveform distortion due to a high output impedance of the signal line driver from causing adverse effects on a displayed image, a control means is provided which causes display signals to be written to pixel electrodes in the liquid crystal panel so as to avoid amplitude variation periods of the display signals. According to a preferred embodiment, the control means consists of a display signal delay circuit, a scanning signal delay circuit, and a display timing controller that control the signal line driver and the scanning line driver.
摘要:
An active matrix type liquid crystal display device wherein a correcting voltage having an absolute value larger than that of a feed-through voltage of the liquid crystal element is applied to a pixel electrode through a storage capacitor, when the liquid crystal has positive dielectric anisotropy and a positive voltage is applied to the pixel electrode, and when the liquid crystal has negative dielectric anisotropy and a negative voltage is applied to the pixel electrode. As the signal voltage value corrected through the storage capacitor can be changed depending on the signal voltage value of the previous field, a voltage to be applied to the liquid crystal can be corrected in advance to emphasize a change in a motion image.
摘要:
A liquid crystal device comprises plural pixel electrodes arranged in a matrix form, a common electrodes facing the pixel electrodes, a liquid crystal layer sandwiched therebetween, and plural switches to drive the respective pixel electrodes. A reflectivity or transmittance of the liquid crystal varies according to a first state where a direction of a normal to each of the liquid crystal is the same, a second state where the above direction of the normal is at random, and a third state where a spiral structure of the liquid crystal is untied, and has a hysteresis characteristics with respect to an applied voltage including an insensitive voltage region where a reflectivity or transmission state is not determined by the applied voltage. The device has an operation such that the applied voltage is brought into the insensitive voltage region, after a display signal is written into the pixel electrode, to hold the display state.
摘要:
A liquid crystal display device is constituted so that liquid crystal having an inherent spontaneous polarization or a spontaneous polarization induced by applying an electric field is interposed between a pixel electrode disposed in matrix and a counter electrode, and a display signal is applied to the pixel electrode through a switching element. In the liquid crystal display device constituted mentioned above, when an electrostatic capacitance of one pixel is C.sub.LC (F), a spontaneous polarization per unit electrode area of the liquid crystal is P.sub.s (C/m.sup.2), a voltage applied between the pixel electrode and the counter electrode is E (V), a pixel electrode area of one pixel is A (m.sup.2), and a storage capacitance for one pixel is C.sub.s (F), they satisfy the following equation;P.sub.s .times.A.ltoreq.5.times.(C.sub.s +C.sub.LC).times.E(1)Thereby, a display of high contrast and high response speed can be obtained. Further, a display of low power consumption and excellent display uniformity, that is, excellent image quality can be obtained.
摘要:
A plurality of pixels are arrayed in a matrix format on the liquid crystal panel of a liquid crystal display. GH liquid crystal layers and transparent electrodes for displaying a plurality of different colors are alternately stacked on a reflecting plate, and therefore each pixel has three liquid crystal layers. Pieces of potential information supplied to the respective liquid crystal layers are controlled by switching elements connected to signal lines and scanning lines. The signal lines and the scanning lines are respectively connected to driving ICs, which are connected to a signal processing circuit. In each pixel, while the potential information of one liquid crystal layer is controlled, the remaining liquid crystal layers are set in a floating state.
摘要:
A liquid crystal display apparatus comprising a display panel having a plurality of pixels arranged in a matrix, signals lines for inputting a video signal to the plurality of pixels, and switching elements for selecting the pixels individually, a video decoder which decodes input compressed video data to obtain a reconstructed picture signal for each frame, a change region detector for detecting a change region between a previous frame and a current frame by using the reconstructed picture signal, to obtain address data on the change region, a display signal converter for converting the reconstructed picture signal into a display picture signal, a difference signal detector for detecting a difference signal indicating at least a difference between the previous frame and the current frame, a switch driver for selectively driving the switching elements to select the pixels corresponding to the change region in accordance with the address data, and a signal line driver for adding the difference signal and the display picture signal of the previous frame, and inputting an addition result to the signal lines.
摘要:
There is provided a field emission type display which is capable of suppressing deterioration of image quality which otherwise occurs due to stepwise cuts and to the increase of wiring resistance caused by a thin width of a cathode line and which causes less failures. The display includes a plurality of cathode lines having an equal line width within the pixel and is structurally based on a multiple gradation representing a scheme of controlling spatial gradation display by changing the number of field emission type emitters to be driven by changing the number of cathode lines to be selected.
摘要:
A liquid crystal display apparatus includes a substrate, a plurality of scanning lines extending substantially in parallel with each other in a row direction on the substrate, a plurality of signal lines extending substantially in parallel with each other in a column direction on the substrate, a signal line driver for supplying a pixel signal of current variables to each of the plurality of signal lines, a scanning line driver for selectively supplying a scanning signal to the plurality of scanning lines, and a plurality of pixels arranged on the substrate at intersections of the plurality of scanning lines and the plurality of signal lines, each of the plurality of pixels including a converter for receiving the pixel signal of current variables, which is supplied to the signal line, and converting the pixel signal into a voltage signal, and a liquid crystal cell to which the converted voltage signal is applied.
摘要:
A pixel electrode is connected to a signal line via an n-channel TFT element for writing image signals and the pixel electrode is connected to an auxiliary storage capacitance line via p-channel TFT element for resetting the pixel electrode, wherein gate electrodes of the n-channel and p-channel TFT elements provided in a pixel region are commonly connected to a corresponding scanning line of the pixel region or to the corresponding scanning line and an adjacent scanning line, respectively.