摘要:
A processing apparatus uses a focused charged particle beam to process a micro sample that is supported on a micro mount part. The micro mount part is supported on a micro sample stage and locally cooled by a cooling unit. The micro mount part is thermally independent of the micro sample stage and, due to its small size, can be cooled rapidly by the cooling unit.
摘要:
A sample to be observed or processed with a focused charged particle beam is formed small, and only the micro sample is locally cooled. Alternatively, a sample mount part is used which has the structure that can relax a thermal drift.
摘要:
To include a focused ion beam apparatus fabricating a sliced specimen by processing a specimen as well as observing the sliced specimen, a scanning electron microscope observing the slice specimen, a gas-ion beam irradiation apparatus performing finishing processing by irradiating a gas-ion beam onto a surface of the sliced specimen, a specimen stage on which the sliced specimen is fixed and having at least one or more rotation axis, a specimen posture recognition means recognizing positional relation of the sliced specimen with respect to the specimen stage and a specimen stage control means controlling the specimen stage based on a specimen posture recognized by the posture recognition means and an installation angle of the gas-ion beam irradiation apparatus in order to allow an incident angle of the gas-ion beam with respect to the obverse or the reverse of the sliced specimen to be a desired value.
摘要:
There is provided a method of arranging, as a composite charged-particle beam system, a gas ion beam apparatus, an FIB and an SEM in order to efficiently prepare a TEM sample. The composite charged-particle beam system includes an FIB lens-barrel 1, an SEM lens-barrel 2, a gas ion beam lens-barrel 3, and a rotary sample stage 9 having an eucentric tilt mechanism and a rotating shaft 10 orthogonal to an eucentric tilt axis 8. In the composite charged-particle beam system, an arrangement is made such that a focused ion beam 4, an electron beam 5 and a gas ion beam 6 intersect at a single point, an axis of the FIB lens-barrel 1 and an axis of the SEM lens barrel 2 are orthogonal to the eucentric tilt axis 8, respectively, and the axis of the FIB lens-barrel 1, an axis of the gas ion beam lens-barrel 3 and the eucentric tilt axis 8 are in one plane.
摘要:
To include a focused ion beam apparatus fabricating a sliced specimen by processing a specimen as well as observing the sliced specimen, a scanning electron microscope observing the slice specimen, a gas-ion beam irradiation apparatus performing finishing processing by irradiating a gas-ion beam onto a surface of the sliced specimen, a specimen stage on which the sliced specimen is fixed and having at least one or more rotation axis, a specimen posture recognition means recognizing positional relation of the sliced specimen with respect to the specimen stage and a specimen stage control means controlling the specimen stage based on a specimen posture recognized by the posture recognition means and an installation angle of the gas-ion beam irradiation apparatus in order to allow an incident angle of the gas-ion beam with respect to the obverse or the reverse of the sliced specimen to be a desired value.
摘要:
There is provided a sample processing and observing method including irradiating a focused ion beam to a sample to form an observed surface, irradiating an electron beam to the observed surface to form an observed image, removing the surface opposite to the observed surface of the sample, forming a lamella including the observed surface and obtaining a transmission observed image for the lamella.
摘要:
There is provided a sample processing and observing method including irradiating a focused ion beam to a sample to form an observed surface, irradiating an electron beam to the observed surface to form an observed image, removing the surface opposite to the observed surface of the sample, forming a lamella including the observed surface and obtaining a transmission observed image for the lamella.
摘要:
The apparatus for working and observing samples comprises a sample plate on which a sample is to be placed; a first ion beam lens barrel capable of irradiating a first ion beam over a whole predetermined irradiation range at one time; a mask that can be arranged between the sample plate and the first ion beam lens barrel, and shields part of the first ion beam; mask-moving means capable of moving the mask; a charged particle beam lens barrel capable of scanning a focused beam of charged particles in the range irradiated with the first ion beam; and detection means capable of detecting a secondarily generated substance.
摘要:
The apparatus for working and observing samples comprises a sample plate on which a sample is to be placed; a first ion beam lens barrel capable of irradiating a first ion beam over a whole predetermined irradiation range at one time; a mask that can be arranged between the sample plate and the first ion beam lens barrel, and shields part of the first ion beam; mask-moving means capable of moving the mask; a charged particle beam lens barrel capable of scanning a focused beam of charged particles in the range irradiated with the first ion beam; and detection means capable of detecting a secondarily generated substance.
摘要:
An electron microscope has a focused ion beam column positioned relative to an electron beam column so that the focused ion beam substantially perpendicularly intersects the electron beam. A backscattered electron detector is positioned relative to the focused ion beam column so that the direction normal to a detection plane of the backscattered electron detector is substantially perpendicular to the direction of the focused ion beam. The backscattered electron detector is configured and positioned to detect backscattered electrons released in a spread of at least about 70 degrees in width from the surface of the section by irradiation of the section with the electron beam 1a.