Abstract:
Provided is a composite charged particle beam apparatus, including: an FIB column (1); an SEM column (2), which is arranged substantially at a right angle with respect to the FIB column (1); a sample stage (3) for mounting a sample (4); a secondary electron detector (5) for detecting a secondary particle generated from the sample (4); an observation image formation portion (8) for forming an FIB image and an SEM image based on a detection signal; and a display portion (9) for displaying the FIB image and the SEM image in which a horizontal direction of the sample in the FIB image and a horizontal direction of the sample in the SEM image are the same.
Abstract:
A composite charged particle beam apparatus comprises an FIB column having an ion beam irradiation axis and an SEM column having an electron beam irradiation axis, the FIB and SEM columns being arranged relative to one another so that the beam irradition axes intersect with each other substantially at a right angle. A sample stage is provided for mounting a sample, and a detector detects secondary particles generated from the sample when irradiated with the ion beam or the electron beam. An observation image formation portion forms an FIB image and an SEM image based on a detection signal of the detector. A display portion displays the FIB image and the SEM image in which a horizontal direction of the sample in the FIB image and said horizontal direction of the sample in the SEM image are the same thereby making it possible for an operator to easily comprehend the positional relationship of the observation image of the sample.
Abstract:
Provided is a method of preparing a sample piece for a transmission electron microscope, the sample piece for a transmission electron microscope including a substantially planar finished surface which can be observed with the transmission electron microscope and a grabbing portion which microtweezers can grab without contacting the finished surface. The method of preparing a sample piece for a transmission electron microscope is characterized by including: a first step of cutting out the sample piece from a sample body Wa with a charged particle beam, the sample piece being coupled to the sample body at a coupling portion; a second step of grabbing with the microtweezers the grabbing portion of the sample piece with the finished surface of the sample piece cut out in the first step being covered with the microtweezers; a third step of detaching the sample piece grabbed with the microtweezers in the second step from the sample body by cutting the coupling portion with the charged particle beam with a grabbed state of the sample piece being maintained; and a fourth step of transferring and fixing with the microtweezers the sample piece detached in the third step onto a sample holder.
Abstract:
There is provided a sample processing and observing method including irradiating a focused ion beam to a sample to form an observed surface, irradiating an electron beam to the observed surface to form an observed image, removing the surface opposite to the observed surface of the sample, forming a lamella including the observed surface and obtaining a transmission observed image for the lamella.
Abstract:
A focused ion beam system includes a sample holder having a fixing plane for fixing a sample, a sample base on which the sample holder is provided, a focused ion beam irradiating mechanism that irradiates a focused ion beam to the sample, microtweezers that hold the sample and have the axial direction at a predetermined angle to a surface of the sample base, an opening/closing mechanism that opens and closes the microtweezers, a rotating mechanism that rotates the microtweezers about the axial direction, and a moving mechanism that moves the position of the microtweezers.
Abstract:
A focused ion beam system includes a sample holder having a fixing plane for fixing a sample, a sample base on which the sample holder is provided, a focused ion beam irradiating mechanism that irradiates a focused ion beam to the sample, microtweezers that hold the sample and have the axial direction at a predetermined angle to a surface of the sample base, an opening/closing mechanism that opens and closes the microtweezers, a rotating mechanism that rotates the microtweezers about the axial direction, and a moving mechanism that moves the position of the microtweezers.
Abstract:
There is provided a sample processing and observing method including irradiating a focused ion beam to a sample to form an observed surface, irradiating an electron beam to the observed surface to form an observed image, removing the surface opposite to the observed surface of the sample, forming a lamella including the observed surface and obtaining a transmission observed image for the lamella.
Abstract:
Provided is a method of preparing a sample piece for a transmission electron microscope, the sample piece for a transmission electron microscope including a substantially planar finished surface which can be observed with the transmission electron microscope and a grabbing portion which microtweezers can grab without contacting the finished surface. The method of preparing a sample piece for a transmission electron microscope is characterized by including: a first step of cutting out the sample piece from a sample body Wa with a charged particle beam, the sample piece being coupled to the sample body at a coupling portion; a second step of grabbing with the microtweezers the grabbing portion of the sample piece with the finished surface of the sample piece cut out in the first step being covered with the microtweezers; a third step of detaching the sample piece grabbed with the microtweezers in the second step from the sample body by cutting the coupling portion with the charged particle beam with a grabbed state of the sample piece being maintained; and a fourth step of transferring and fixing with the microtweezers the sample piece detached in the third step onto a sample holder.