摘要:
A method of fabricating an array substrate includes sequentially forming a first metal layer, a first inorganic insulating layer and an intrinsic amorphous silicon layer on a substrate, the first metal layer including a first metallic material layer and a second metallic material layer; crystallizing the intrinsic amorphous silicon; forming a gate electrode, a gate line, a gate insulating layer and an active layer; forming an interlayer insulating layer including first and second contact holes respectively exposing both sides of the active layer; forming first and second ohmic contact patterns respectively contacting the both sides of the active layers, a source electrode, a drain electrode, and a data line connecting the source electrode; forming a passivation layer on the source electrode, the drain electrode; and forming a pixel electrode on the passivation layer and contacting the drain electrode.
摘要:
A method of fabricating an array substrate includes sequentially forming a first metal layer, a first inorganic insulating layer and an intrinsic amorphous silicon layer on a substrate, the first metal layer including a first metallic material layer and a second metallic material layer; crystallizing the intrinsic amorphous silicon; forming a gate electrode, a gate line, a gate insulating layer and an active layer; forming an interlayer insulating layer including first and second contact holes respectively exposing both sides of the active layer; forming first and second ohmic contact patterns respectively contacting the both sides of the active layers, a source electrode, a drain electrode, and a data line connecting the source electrode; forming a passivation layer on the source electrode, the drain electrode; and forming a pixel electrode on the passivation layer and contacting the drain electrode.
摘要:
A thin film transistor may include an active layer formed on an insulating substrate and formed with source/drain regions and a channel region; a gate insulating film formed on the active layer; and a gate electrode formed on the gate insulating film. The gate electrode may be formed of a conductive metal film pattern and a conductive oxide film covering the conductive metal film pattern. The source/drain regions may include an LDD region, and the LDD region may at least partially overlap with the gate electrode.
摘要:
A thin film transistor may include an active layer formed on an insulating substrate and formed with source/drain regions and a channel region; a gate insulating film formed on the active layer; and a gate electrode formed on the gate insulating film. The gate electrode may be formed of a conductive metal film pattern and a conductive oxide film covering the conductive metal film pattern. The source/drain regions may include an LDD region, and the LDD region may at least partially overlap with the gate electrode.
摘要:
A thin film transistor having a source/drain electrode on an insulating substrate is provided with a metal oxide layer interposed between a source/drain electrode and a metal connecting line. The formation of the metal oxide layer prevents the occurrence of the galvanic phenomenon.
摘要:
Methods of fabricating a TFT and an OLED using the same are provided. The method of fabricating a CMOS TFT includes: preparing a substrate having first and second TFT regions; forming a gate electrode on the substrate; forming a gate insulating layer on the entire surface of the substrate including the gate electrode; forming a semiconductor layer on a predetermined region of the gate insulating layer using a mask; exposing the back of the mask using the gate electrode; injecting n-type impurity ions into the semiconductor layers of the first and second TFT regions using the back-exposed mask and forming a channel region and source and drain regions; ashing both sides of the back-exposed mask; injecting low concentration impurity ions into the semiconductor layers of the first and second TFT regions using the ashed mask and forming an LDD region; and injecting p-type impurity ions into the semiconductor layer of the second TFT region and forming source and drain regions.
摘要:
A thin film transistor may include an active layer formed on an insulating substrate and formed with source/drain regions and a channel region; a gate insulating film formed on the active layer; and a gate electrode formed on the gate insulating film. The gate electrode may be formed of a conductive metal film pattern and a conductive oxide film covering the conductive metal film pattern. The source/drain regions may include an LDD region, and the LDD region may at least partially overlap with the gate electrode.
摘要:
A method for forming a polycrystalline silicon layer for TFT according to the present invention includes steps of: depositing an amorphous silicon layer and a silicon oxidation layer on a substrate in this order; and implanting semiconductor ions into the amorphous silicon layer and the silicon oxidation layer while heating the substrate, thereby converting the amorphous silicon layer into a polycrystalline silicon layer, and forming an amorphous oxidation layer between the amorphous silicon layer and the silicon oxidation layer.
摘要:
Provided is a thin film transistor that may be manufactured using Metal Induced Crystallization (MIC) and method for fabricating the same. Also provided is an active matrix flat panel display using the thin film transistor, which may be created by forming a crystallization inducing metal layer below a buffer layer and diffusing the crystallization inducing metal layer. The thin film transistor may include a crystallization inducing metal layer formed on an insulating substrate, a buffer layer formed on the crystallization inducing metal layer, and an active layer formed on the buffer layer and including source/drain regions, and including polycrystalline silicon crystallized by the MIC process.
摘要:
A thin film transistor according to the present invention may include a gate insulating layer; and a lower pattern placed below the gate insulating layer to contact therewith and having an edge with a taper angle of at most about 80°. With this design, dielectric strength of the gate insulating layer can be enhanced. The lower pattern can be a gate electrode layer.