摘要:
The device has a printed-circuit board (5), on one side of which at least one antenna (1) is located and, on the other side of which electrical circuits (3) are located. An electromagnetic shield between the antenna (1) and the electrical circuits (3) is realized in a manner that is simple with regard for production engineering by locating a feeder network (13, 15)—developed using a coplanar circuit technique and with which the at least one antenna (1) is contacted—on the antenna-side surface of the printed-circuit board (5), and by covering the antenna-side surface of the printed-circuit board (5) with the connected-to-ground outer conductor (45) of the coplanar circuit to such an extent that the required shield between the antenna (1) and the electrical circuits (3) is produced as a result.
摘要:
In a lens arrangement for collimating radar waves for distance sensors, in particular for motor vehicles, several sublenses are arranged integrally next to one another. A lobe enlargement necessary for angular analysis is thereby achieved. The range is only slightly reduced as compared to a lens having a surface area of the same size.
摘要:
To improve the space factor of a barium titanate resonator, the resonator is a tubular carrier (11) having metal layers on the inner and outer surfaces. At least one of the metal layers is axially interrupted by a slit. Terminal connections for the resonator are located adjacent the slit on the interrupted layer, and on the continuous layer. For shielding, preferably, the continuous layers at the outside and end tabs (FIG. 4) may additionally be provided. More than one axially staggered inner/outer electrode layer system may be provided on one tubular carrier.
摘要:
It is provided that the semiconductor component is a component of a semiconductor circuit (10) comprising a first silicon layer (12), an adjoining silicon dioxide layer (insulating layer (14)) and a subsequent further silicon layer (structured layer (16)) (SOI wafer), and the semiconductor component comprises an IMPATT oscillator (30), having a resonator (24) which includes a metallized cylinder (18) of silicon, disposed in the structured layer (16); a coupling disk (28) covering the cylinder (18) in the region of the first layer (12); and an IMPATT diode (32), communicating with the cylinder (18) of the resonator (24) via a recess (38) in the coupling disk (28); and a reference oscillator (46) of lower frequency, having a resonator (24) which includes a metal cylinder (18) of silicon, disposed in the structured layer (16), and coupling disk (28) covering the cylinder in the region of the first layer (12); and a microwave conductor, communicating with the cylinder (18) of the resonator (24) via a recess (38) in the coupling disk (28), and the reference oscillator, via an active oscillator circuit (58), serves the purpose of frequency stabilization of the IMPATT oscillator (30); with integrated Schottky diodes; and a transmitting and receiving antenna (49).
摘要:
To make inductance elements, thick film electrically conductive paste, which may include precious metal such as silver, are applied by a deformable stamp on a ferrite core which, for example, can be someone hump shaped, for adhesion to a carrier (30) and formed with openings thereto, the stamp being shaped to fit within the opening and deforming to penetrate the opening to apply the thick film conductive paste in form of conductive tracks thereon. Conductive tracks can be applied, previously, to a substrate carrier (30), which are then joined by the paste strips to form interconnected windings (FIGS. 1a, 1b); or the ferrite may be in form of a toroidal core (34), on which the conductive tracks are applied around all surfaces, to form connected windings thereon, the deformable stamp having a projecting tip which can fit within the opening of the toroidal core.
摘要:
A compact radar device that can be produced with little complication has at least one cavity (3) with a radiation element (10) disposed therein and a shielded chamber (2) for electrical circuits (4). A housing (1) is designed in such a manner that it defines both the shielded chamber (2) for the electrical circuits (4) and the at least one cavity (3) for the at least one antenna radiation element (10). A printed board (5) carries the electrical circuits (4) and is inserted into the housing (1) between the two chambers (2, 3) as a shielding partition. The antenna radiation element (10) is electrically coupled to the two conductor arms to a feed network on the printed board (5) via contact pins (16, 19).
摘要:
The invention relates to a compact radar device that can be produced with little complication and that comprises at least one cavity (3) with a radiation element (10) disposed therein and a shielded chamber (2) for electrical circuits (4). A housing (1) is designed in such a manner that it defines both the shielded chamber (2) for the electrical circuits (4) and the at least one cavity (3) for the at least one antenna radiation element (10). A printed board (5) carries the electrical circuits (4) and is inserted into the housing (1) between the two chambers (2, 3) as a shielding partition. The antenna radiation element (10) is electrically coupled to the two conductor arms to a feed network on the printed board (5) via contact pins (16, 19).
摘要:
The invention relates to an integrated semiconductor component for high-frequency measurements and to the use thereof. It is provided that the semiconductor component is a component of a semiconductor circuit (10) comprising a first silicon layer (12), an adjoining silicon dioxide layer (insulating layer (14)) and a subsequent further silicon layer (structured layer (16)) (SOI wafer), and the semiconductor component comprises an IMPATT oscillator (30), having a resonator (24) which includes a metallized cylinder (18) of silicon, disposed in the structured layer (16); a coupling disk (28) covering the cylinder (18) in the region of the first layer (12); and an IMPATT diode (32), communicating with the cylinder (18) of the resonator (24) via a recess (38) in the coupling disk (28); and a reference oscillator (46) of lower frequency, having a resonator (24) which includes a metal cylinder (18) of silicon, disposed in the structured layer (16), and coupling disk (28) covering the cylinder in the region of the first layer (12); and a microwave conductor, communicating with the cylinder (18) of the resonator (24) via a recess (38) in the coupling disk (28), and the reference oscillator, via an active oscillator circuit (58), serves the purpose of frequency stabilization of the IMPATT oscillator (30); with integrated Schottky diodes; and a transmitting and receiving antenna (49).
摘要:
The invention relates to a micromechanical resonator having a bondable resonance body and a method for fabricating a micromechanical resonator for semiconductor components.The invention provides that the resonator (26) is composed successively of a first layer (16) of silicon for coupling the resonator (26) in terms of a circuit, an insulating layer (14) of silicon dioxide, a cylindrical base layer (cylinder 18), and a metal layer (20) completely surrounding the cylinder (18).The method provides that a cylindrical structure (18) (cylinder) is etched (trench etching process) in a base layer (12) of p−-doped silicon (SOI wafer) separated from a layer (16) of silicon by an insulating layer (14), and the cylindrical structure (18) is coated with a metal layer (20).
摘要:
The invention relates to a locator, in particular a handheld locator for detecting inclusions in walls, ceilings and/or floors, having a capacitive sensor device disposed in a housing, having means for generating a detection sensor of the at least one capacitive sensor device, having a control and evaluation unit, communicating with the sensor device, for ascertaining measurement values from the detection sensor, and having an output unit for reproducing measurement values of the capacitive sensor device.According to the invention, it is proposed that a measuring capacitor (16) of the capacitive sensor device (10) has a first electrode (21), which includes one face of the housing (14) of the sensor device (10).